

Subject: DELIVERABLE:

Volpe SuperFAR V6.0 Software and Support Documentation;
Letter Report V324-FB48B3-LR3

Date: 29SEP2017

 From:

Dave Read, IT Specialist, Acoustics, Volpe Center,
Environmental Measurement and Modeling Division

Reply to
Attn. of:

V324

To: Rebecca Cointin, Manager, Noise Division, FAA/AEE-100

This Letter Report serves to deliver the third external release version of the USDOT Volpe
Center’s SuperFAR Spectral Aircraft Noise Processing Software (Version 6.0). Earlier versions of
the software were delivered to FAA in February 2015 and March 2016 via Volpe Letter Reports
V324-FA5JB4-LR10 and V320-FA5JBH-LR7 respectively.

This version of the software represents substantial improvements in the underlying structure of
the code, minor bug fixes, and minor improvements in functionality, including:

• Provision for generating verbose output to the Python shell for diagnostic purposes;
• Improved handling of input variables and filenames;
• Ability to generate and handle both single-spectrum and spectral time-history versions

of cumulative test-day atmospheric absorption coefficients;
• Increased flexibility in determining the temperature used for calculation of test-day

soundspeed, as well as the ability to select alternate methods for calculation of
soundspeed itself;

• Improved reporting of test-day and reference bandsharing, as well as presentation of
PNLTM with and without bandsharing applied;

• Replaced TC1k flag with variable TCLowBand to allow for Pseudotone elimination to
start at user-specified band. (For situations where an applicant might select 800 Hz
instead of 1kHz, for example.)

This version also benefits from having been exercised by Volpe as the primary resource for
validation of applicants’ noise certification software and methodologies since the previous
version was released.

 Memorandum
U.S. Department
of Transportation

Volpe National
Transportation
Systems Center

In addition to changes to the software itself, the User Guide has been updated to Version 2, and
a new Developer’s Manual has also been created. This Manual is provided in html form, and
incorporates written text developed by Volpe, as well as specific documentation of individual
modules, generated automatically from within the SuperFAR software. Volpe expects that this
hybrid method of documentation will provide accurate, useful and up-to-date information and
specifications for those interested in examining or developing the source code and software
further. This document will automatically be updated with each new release of SuperFAR
(including internal, incremental releases). The updated Users Guide covers the new modules
and functionality added since the previous release.

Finally, a new example script and data set covering an updated preferred process is included to
replace the examples in the previous releases. The data set has been further anonymized
beyond what was previously provided, and the new script now exercises the meteorological
data handling functions. It also implements the use of global variables within the script itself for
passing data directly between modules without first writing to and reading from data files.

If you have any comments or questions, please do not hesitate to contact me.

▬

Attachment:

SuperFAR V6.0 distribution package;

cc:

 M. Marsan, FAA, AEE-100
 S. Liu, FAA, AEE-100
 B. Conze, FAA (TADNCS), AIR-672
 C. Cutler, Volpe, V324

C. Roof, Volpe, V324
C. Reherman, Volpe, V320
G. Fleming, Volpe, V320
E. O’Neil, Volpe Contractor – Safety Net Systems, V343

29SEP2017

1

USDOT Volpe Center Acoustics
SuperFAR

(Spectral Data Processing Suite)
User Guide - V2

Dave Read & Chris Cutler, Environmental Measurement and Modeling Division, V-324

Eugene O’Neil (Contractor - Safety Management Systems)

SuperFAR V6.0 29 September 2017

U.S. Department
of Transportation
Volpe National
Transportation
Systems Center

29SEP2017

2

TABLE OF CONTENTS

1. Introduction page 3

2. Installation and uninstallation page 4

3. Operation page 5

4. Scripts page 6

5. Data Files page 10

6. File preparation for initial measured data inputs page 12

Appendix 1 – Module Reference page 15

Appendix 2 – SuperFAR Data File Specifications page 31

Appendix 3 – Data Analysis and Visualization page 64

29SEP2017

3

1. Introduction

SuperFAR is a collection of software modules – developed by the Environmental Measurement and
Modeling Division of the US Department of Transportation’s Volpe National Transportation Systems
Center - that performs various elements of the EPNL calculation process used for aircraft noise
certification in accordance with the specifications of 14CFR part 36 and ICAO Annex 16, Volume I. It is
implemented in the Python programming language, and operation of the software is based on plain-text
scripting. Input and output files are also plain-text, formatted as comma-separated values, and can be
imported into any text-editor or spreadsheet software application. SuperFAR is currently only available
as a Microsoft Windows installation package.

Starting with a time-history of 1/3 octave band sound pressure levels obtained from a real-time
analyzer, in combination with aircraft position TSPI data and meteorological measurement data, the
software allows for computation of reference-condition EPNL using a variety of methods. Users may
select from various options for each module by assigning them in a script, and may change the sequence
of operations by selecting the order in which various modules are called within a script. Example scripts
are provided which include suggested input/output file-naming schemes, documentation of selectable
inputs (including listings of options for enumerated inputs), and copious commenting to aid in
understanding the available processes and methods within SuperFAR.

This User Guide provides information on installation and operation of SuperFAR, as well as information
about editing and creating scripts, and preparing input data files. It also provides functional descriptions
and guidance for each of the modules in the current version.

A Developer Manual is available which contains source code listings, as well as complete documentation
of the various file-handling systems, data-object methods, qualities and attributes, and additional
information not contained in the User Guide.

29SEP2017

4

2. Installation and Uninstallation

The standard SuperFAR distribution zip file contains the latest SuperFAR library, with example
scripts and data, as well as a copy of this User Guide.

SuperFAR requires Python 3.4.1 or later. A suitable Python installer for Windows (python-
3.4.1.msi) is provided in the standard SuperFAR distribution. Execute this installer and make
sure to select the option "add python.exe to path" in the customization settings during the
install process. For all other installation options, the default settings should be sufficient.

Next install the SuperFAR library under Windows by executing the SuperFAR installation exe
(superfar-4.*.win32.exe). Leaving all installation options at their default settings should be
sufficient. Note that this installation exe will forcefully overwrite any version of SuperFAR that is
already installed on the target machine, effectively acting as an upgrade or downgrade.

To uninstall SuperFAR from Windows, manually remove the directory “C:Python34\Lib\site-
packages\superfar” and all of its contents.

Once Python 3.4 and the SuperFAR library are installed, copy the SuperFAR example scripts and
data from the NEW Preferred Process subdirectory of the distribution archive to a working
directory, and they should be ready to run.

The Source Code subdirectory contains the full source code of SuperFAR, which may be of
interest to advanced developers.

29SEP2017

5

3. Operation

Once SuperFAR and Python have been installed and set up per the instructions in Section 2 of
this User Guide, a data folder needs to be selected or created. This folder must contain a Python
script and any input data files required for operation of the SuperFAR modules called by the
script. (See Sections 4 and 5 of this User Guide for general information about Scripts and Data
Files, respectively, and see Appendix 1 on SuperFAR Modules and Appendix 2 on SuperFAR File
Formats for details and specifications for particular file structures, formats and requirements.)

All python scripts that come with SuperFAR have a corresponding windows BAT file, with a
matching name that differs only by having a “.bat” extension instead of a “.py” extension.
Double clicking the BAT file in windows explorer will run the python script and save the output
to a log file.

If the user wishes to write a new python script, either from scratch or as a modified version of
an existing script, there is no need to edit a BAT file to execute it: merely copy and rename the
included run_script.bat file to match the new script name (use the script name, but replace the
.py extension with .bat), and the BAT file will dynamically deduce the name of the python script
it should execute from its own name, as well as the name of the log file it saves the output of
the script to.

Alternately, a SuperFAR script can be run from within a python IDE, such as “IDLE” which comes
standard with Python for Windows, to test a script as it is being created, modified, or debugged.
From the file directory of the data folder, right-click on the script you wish to debug and select
“Edit with IDLE”. The IDLE script-editing window opens. From the menu bar at the top of the
window, click on “Run”, and then select either “Check Module” (to check the syntax of the
python script) or “Run Module” (to actually run the script). Either selection will open a Python
Shell window. (When invoking a SuperFAR Python script from a batch file based on
run_script.bat, the shell output is redirected to a .log text file that can be examined after the run
has completed.) “Check Module” will open a shell with some version info and an interpreter
prompt “>>>” with a blinking cursor if there are no Python issues with the script. “Run Module”
will open a shell that contains any print statements within the script, plus diagnostic information
about each module that is called, including echoing all of the input and output settings within
the script. In either case, the shell will also provide error messages if any Python or file-related
errors are encountered. An instance of a Python shell can be saved as a text file or sent to a
printer for later reference. If there are no errors, and the shell is no longer needed, it can be
closed, as can the script-editing window.

Output data files can be found in the data subfolder named within the script – typically “Results”
– and can be viewed or edited with external tools (text editors, spreadsheet software, etc.).

29SEP2017

6

See Appendix 3: Data analysis and visualization, for more information on evaluating input and
output data files.

4. Scripts

SuperFAR processing and sequencing is controlled by scripting in Python. Python scripts are
plain-text files that have a .py extension. They can be generated and edited in any Windows text
editing software, such as Notepad, Notepad++, or WordPad, or within the provided Python GUI,
IDLE. It is recommended that each SuperFAR script be located within a base directory folder that
also contains the input data files for a particular project for one or more aircraft events. The
folder should be named to reflect the process being used for that particular data set. (The
example provided in the SuperFAR installation is named “NEW Preferred Process”.)

SuperFAR scripts can include comments and any Python commands or operators supported by
Version 3. (See external Python references for more info.) Scripts that are intended to be Linux
compatible should begin with this line:

 #!/usr/bin/env python3

To access SuperFAR modules within Python, a script must include the following line prior to
invoking any SuperFAR-specific functionality:

 from superfar import *

To enable or disable “verbose” output for diagnostic purposes, the following line should be set
appropriately. True will enable verbose output, False will disable (default setting) :

 superfar.verbose = False

(Note that the verbose functionality can be switched on and off locally within a script)

The following line reports the current version of SuperFAR (essential for troubleshooting and
diagnostics):

 print (“SuperFAR Version ID: “ + SUPERFAR_VERSION)

The user can assign a descriptive “Project Name”, along with the “Event ID” prefix unique to
each project by using the following lines:

 superfar.ProjectName = 'SuperFAR CLTO1 Preferred Process Example Case'

EventID = "CLTO1"

It is also useful to set up paths and data subdirectories:

 if not os.path.exists(“Results”):
 os.makedirs(“Results”)

29SEP2017

7

 if not os.path.exists(“Temp”):
 os.makedirs(“Temp”)

The example script includes many commands and operators, including setting of input variables,
assignment of filenames, commenting, interaction with the shell, and so on. For implementation
of any specific functionality, please contact Volpe.

When modifying an existing SuperFAR script, it is recommended to rename the file in a
meaningful manner. Original versions of the example scripts can be restored from the
installation zip file at any time.

When generating or modifying a SuperFAR script, there are several important elements to keep
in mind:

• Header
• Commenting
• Calling
• Options
• Filespecs
• Shell

a. Header – this should include path info and invoke the SuperFAR code library, then identify

the process being used.

b. Commenting – this is critical for documenting processes applied to a particular data set, and
care should be taken to include sufficient and accurate commenting for future reference.

c. Calling – Each module is called by name, followed by options selections and I/O filespecs.
Comments can be freely inserted within the call.

d. Options – within the calling structure for each module are settings for options within the
module. Each of these should be carefully considered and selected, as they can have
substantial effects on the output data values. There are several types of input options:

1. Numerical values – typically real numbers that represent some decibel

adjustment, physical quantity, or criterion. Usually found within a source
data set. If uncertain, it is probably best to enter “0.0”.

2. Logical values – typically used to set flags for process options within a
module, these should be entered as simple text: True or False.

29SEP2017

8

3. Enumerated – these inputs must be selected from a group of pre-defined
values. The example script provided with the SuperFAR installation includes
comments that list all such optional values, wherever they are used. It is
recommended to keep such comments in any modified scripts for easy
access. Defined values for enumerations can also be found in the Appendix
to this User Guide, within the description of the individual modules.

An example of an enumerated input is the AveragingMethod setting in
ReAvg: It can be set to any of the following:

• ‘CONTEXPO’ – Continuous exponential averaging
• ‘4S100’ – four-sample, 100% coefficients
• ‘4S95’ – four-sample, 95% coefficients

4. Numerical values with selectable units – these are combination inputs that

contain the units used as well as the value within those units. An example
would be Temperature in the SSPDCalc module: It can be set as
Celsius(24.869) which sets it to 24.869 degrees C.

e. Filespecs – Within SuperFAR scripts, these can be set as absolute or relative pathspecs
concatenated with exact filenames. If no pathspec is given, then it is assumed that the
current directory containing the script is the path. The example scripts include the
setting of a local EventID variable that contains the base filename for all input and
output files. This is typically a multi-character identifier unique to a particular aircraft
noise event. Filespecs within SuperFAR scripts typically concatenate predetermined
pathspecs and suffixes and extensions to these EventIDs. Example:

• For a notional script located in C:/Test/Pref/ :
• EventID = “A123”
• InputData = EventID + “raw.STH.csv”
• OutputData = “results/” + EventID + cooked.STH.csv”
• This will access input file C:/Test/Pref/A123raw.STH.csv and generate

output file C:/Test/Pref/results/A123cooked.STH.csv

Note that when changing the sequence of operation within a script, filespecs for input
and output files will likely need to be updated within the script to reflect the new
process sequence. As an example, if slow time-averaging in ReAvg is performed in the
original script after background noise adjustment via Badjer has been run, and the new
modified script will perform slow time-averaging prior to performing background noise
adjustment (ReAvg then Badjer), then the following example changes will need to be
made to particular filespecs:

 Original script (Badjer then ReAvg):

29SEP2017

9

(Badjer) input_STHData = EventID + “raw.STH.csv”
(Badjer) ADDCORR_STHData = “results/” + EventID + “BADJER.sth.csv”
(ReAvg) input_STHData = “results/” + EventID + “BADJER.sth.csv”
(ReAvg) output_STHData = “results/” + EventID + “SLOW.STH.csv”

 New modified script (ReAvg then Badjer):

(ReAvg) input_STHData = EventID + “raw.STH.csv”
(ReAvg) output_STHData = “results/” + EventID + “SLOW.STH.csv”
(ReAvg) input_STHData = “results/” + EventID + “SLOW.STH.csv”
(Badjer) ADDCORR_STHData = “results/” + EventID +BADJER.sth.csv”

(Also note that the next module called, which originally used [“results/” + EventID +
“SLOW.STH.csv”] as input, will now need to be edited to use [“results/” + EventID +
“BADJER.sth.csv”] .

f. Shell – Interaction with the environment’s shell can be performed from within scripts.
(Refer to Python and IDLE references for more information.) The example script includes
simple print statements to establish points of reference during a run where messages
from the environment are being generated. For example, prior to calling each module,
there is a simple print statement including the module’s name, e.g.:

 Print(“Badjer”)

The example scripts each also contain a print statement to indicate that the script has
been completed:

 Print(“run completed”)

Note that shell interaction is not available when running SuperFAR Python scripts based
on the run_script.bat batch file. (Shell output from such batch runs is saved in .log files.)

29SEP2017

10

5. Data Files

SuperFAR data files have been designed to be self-documenting to a large extent. The files are
formatted as plain-text, with comma-separated values, so that they can be easily imported into
spreadsheet software and text editors. The files are comprised of three main components:
Header, Column Labels, and data values.

a. Header:
SuperFAR file headers contain machine-readable and human-readable information about the
data file, including the name, creation date, user-provided comments, and important data
values used in various processes, as well as information about the source data files and modules
used to generate them. Each header element includes a label, designated by the last two
characters being double asterisks: “**”. (Common labels include “FileType**”, “FileName**”,
FileDateTime**”, ProjectName**”, MicrophoneID**”, etc.) Each of the header labels is followed
by a comma, then by the value for that header element. Note that the sequence of Header fields
is not important for machine-reading. Fields are identified and located by their labels. See the
example SuperFAR file header fragment below:

FileType**, Spectral Time-History
FileName**, CLTO1.sth.csv
FileDateTime**, 6/25/2009, 11:15 am
ProjectName**, anonymous Validation
MicrophoneID**, na
AveragingMethod**, LINEAR
TimeStampType**, MIDPT
AdjustmentCode**, No adjustments
StartTime**,12, 26, 29.5
ReferenceTime**, 12, 26, 29.5
ReferenceTimeType**, START
GeneratedBy**, manually from .csv file
NumberOfGenerationFiles**, 1
GenFileName1**, CLTO1-CSV.SPC.csv
GenFileDateTime1**, 6/18/2009, 10:22 am
OtherRecords**, 0
NumberOfCommentLines**, 1
Anonymous Data,

b. Column Labels:

At the bottom of the file header section is a line of column labels for the data contained in the
file. There is one label for each column of data values in the file, and each label is separated by a
comma from the next. In some cases, there will be more than one line of Column Labels. When
viewing data files in a text editor, users should be aware that column labels most likely will not

29SEP2017

11

be aligned with the data values associated with that column. For ease of use, viewing data files
from within a spreadsheet program like Excel is recommended.

Example Column Labels line excerpt:

Rec#, TODHH, TODMM, TODSS, RelTime, B17/50Hz, B18/63Hz, …

c. Data Values:
When the default application associated with .csv files is set as Excel in the operating system
(refer to Microsoft Windows Help for the process for doing this), double-clicking on a SuperFAR
data file will open it in a new tab in a new Excel worksheet. Data can be cut and pasted between
Excel sheets / SuperFAR data files, and saved in .csv format to maintain compatibility with
SuperFAR. This compatibility allows for hand-calculations or external processes on data between
SuperFAR operations. In such cases, separate SuperFAR scripts should be created for the
processing sequences prior to and subsequent to any spreadsheet processing.

Example Data line excerpt:

3, 07, 28, 43.542, 78.923, 81.1, 79.99, …

29SEP2017

12

6. File preparation for initial measured data inputs

Prior to SuperFAR processing, raw data obtained from instrumentation in the field must be
prepared as SuperFAR-formatted data files. This includes conversion of tabulated data values –
such as 1/3 octave band SPLs, physical position distances from reference location, or
temperature and relative humidity vs. height – to comma-separated-values format, as well as
population of data file header information. Filenaming and data organization are also key
elements for consideration, and will require editing of existing scripts or development of new
scripts for proper processing.

Listed below are details on preparing the inputs required to run a SuperFAR process

a. Spectral Time-History data from analyzer
1. Real-time 1/3 octave band analyzers typically output the individual sound

pressure levels (SPLs) as a two-dimensional spectral time-history, with an
individual 1/3 octave band frequency spectrum provided as a row of values, and
multiple spectra obtained over time as a series of such rows. This is the format
SuperFAR uses. Since the noise certification regulations specify processing of
1/3 octave band data from 50 Hz through 10 kHz (ANSI/ISO bands 17 through
40, inclusive), SuperFAR is preset to use these bands. (SuperFAR was designed
to accommodate a wider bandwidth, but since there are no algorithms for some
portions of the EPNL process outside this region, this flexibility has not yet been
implemented.) SuperFAR will accept whatever resolution of SPLs is available
from the analyzer – no rounding or truncation is necessary, although SPL
outputs are typically provided to 0.01 dB in .SSR (Single spectrum record) or
.STH (spectral Time-History) output data files. (SuperFAR provides additional
resolution for some specific decibel outputs, such as bandsharing in EPNL.RPT
files)

2. A record number and “timestamp” precede the 1/3 octave band SPLs in each
spectrum row in an .STH file, and are critical to synchronization between
acoustic data and aircraft position data, and to a lesser extent, to
meteorological data. Note that SuperFAR time-handling functions allow for I/O
of time data as separate fields for hours, minutes, and seconds, or as total
seconds since midnight, or other formats, but care should be exercised when
including spreadsheet software such as Excel in the process, as it uses its own
internal representation of time, which is not entirely compatible with SuperFAR.
This incompatibility stems from the need for observation and inclusion of
fractional seconds while still maintaining time-of-day within SuperFAR
processes. Note that SuperFAR also includes the capability of working with
relative time as an option to using time-of-day. There is also provision for
specifying a reference time when relative time is utilized.

3. Specific header information should be provided that is relevant to the analysis
project.

29SEP2017

13

b. Position Time-History data

1. SuperFAR requires aircraft position information in local coordinates, where the
centerline microphone is positioned at 0,0,0. A position time-history (PTH)
dataset, containing X, Y, and Z coordinates of the aircraft vs. time, synchronized
to the timebase for the acoustic measurements can be input directly, or after
smoothing or other external reduction processes to the SuperFAR PTH file
format: the file header should contain information about the project, the date
of measurement and other details, followed by position records, each consisting
of a single row of T,X,Y,Z measurement data for a moment in time. The time in
each position record, Tp, should be the time at which each aircraft position
measurement was made. (These position time histories typically come from
DGPS instrumentation.)

2. In some cases, direct position measurement histories are not available, such as
when using photographic positioning techniques and still cameras. In such
cases, a set of Single-Point Track descriptors are obtained externally to
SuperFAR, and entered as inputs to the SPoinTrkIn module, which then creates a
straight-line position time history file for use in determining aircraft noise
geometry.

3. Once obtained, the position time history data are used as inputs to the GeoCalc
module, which in combination with acoustic spectral data timestamps,
microphone position and meteorological information (to obtain soundspeed),
generates aircraft noise geometry for the time of emission of each spectrum in
the spectral time-history file. These geometry data elements are used for
reconstruction of masked SPLs as well as for adjustment of test-day SPLs to
reference conditions.

c. Meteorological Profiles
1. SuperFAR requires temperature and relative humidity values measured at

various height increments above the ground near the measurement site.
Typically, an instrumented aircraft, weather balloon, or model aircraft performs
meteorological flights in between series of aircraft noise test events. Each of
these “met flights” results in a met profile that is represented by a single
xxxx.MET.csv file. Measurement heights must include 10 meters (or 32.8 feet),
as well as measured values for the upper and lower boundaries of atmospheric
“layers” of 100 feet (or 30 meters) in depth. (These temperature and humidity
values at layer boundaries can be determined externally by interpolation
between actual met measurement heights prior to generation of the input met
files.) Each met profile can be assigned a single time-of-day, or measurements at
individual heights can each have their own measurement TODs associated with
them.

29SEP2017

14

2. For each aircraft noise event to be evaluated, determine an event time-of-day
(ETOD), which can be any of the following:

i. TOH – time when aircraft is overhead or abeam of the measurement
microphone;

ii. TCPA – time at which aircraft is at the geometrical closest-point-of-
approach (minimum distance) to the measurement microphone;

iii. TMAX – time at which the maximum PNLT level was measured (Note
that this time cannot be obtained precisely prior to development of
atmospheric absorption coefficients – alphas – which are based on
measured temperature and humidity data, so approximation and / or
recursion must be employed to obtain meaningful values of both TMAX
and the cumulative test-day alphas.);

iv. OTHER – any other TOD used to represent the aircraft event;
3. Identify the MET profile data closest in time prior to the aircraft noise event of

interest. This data must be formatted and saved as a xxxx.B4.MET.csv file.
Identify the MET profile closest in time subsequent to the aircraft noise event of
interest. This data must be formatted and saved as a xxxx.AFTR.MET.csv file.
Note that both MET files must use the same temperature units and distance
units, and the heights included in the two profiles must match each other, and
must represent measured values at the upper and lower boundaries of the
atmospheric layers (10 meters and 100 foot or 30 meter increments from the
ground). When times vary within a single MET profile, care should be taken to
ensure that all of the TOD values in the xxxx.B4.MET.csv file occur prior to the
aircraft event TOD (ETOD), and that all of the TODs in the xxxx.AFTR.MET.csv file
occur after the ETOD.

4. The TDMet module will interpolate the temperature and relative humidity
values in the xxxx.B4.MET.csv and xxxx.AFTR.MET.csv files to the aircraft ETOD.
Then it will check if layering is required and will determine layered/averaged
and cumulative atmospheric absorption coefficients (Alphas) for use in
reconstruction of masked data and adjustment to reference conditions. These
meteorological values will also be used for computation of soundspeed for use
in noise geometry calculations dependent on sound propagation times. (Note
that in some cases, cumulative alphas and soundspeed values may already be
provided for a particular data set. In such cases, it is possible to skip preparation
of .MET files.)

d. Microphone position data
1. SuperFAR works with measured data for a single microphone at a time. The

input data folder must include a xxxx.MIC.csv file which contains the
microphone designation, the microphone site X, Y, and Z coordinates, and the
microphone height above the local ground surface. Provision is made for
including a microphone orientation angle, which could be used in determining

29SEP2017

15

sound incidence angles for determination of non-uniform free-field corrections,
but this functionality has not yet been implemented.

e. Background noise

1. For each aircraft noise event, an average 1/3 octave band spectrum of pre-
detection background noise levels is required. The average SPLs should be
obtained by performing a 30-ssecond linear time average (or LEQ) of typical
background noise at the microphone site that represents the background noise
during the aircraft noise measurement. Pre-detection levels should be obtained
at the same gain and sensitivity settings as the aircraft noise, so that additive
system background noise is properly included. The average pre-detection SPLs
should be provided in a file named “xxxx.PreD.SSRcsv”. (“SSR” stands for “Single
Spectrum Record”.)

2. Also required for each event is a 1/3 octave band spectrum of post-detection
background noise levels. This data is required to identify the minimum level
below which measured aircraft SPLs are considered to be non-valid. Pre-
detection noise represents limitation in the recording and analysis system that
are not additive in nature, such as amplitude windowing limits, or amplitude
non-linearity exceedances. As such, post-detection levels can be shared among
multiple aircraft noise datasets if appropriate. The post-detection noise levels
should be provided in a file named “xxxx.postD.SSR.csv”.

f. Correction data

1. Frequency-dependent corrections for test-day measurement system effects,
including elements such as microphone pressure response, microphone free-
field response, windscreen insertion effects, and system frequency-response
testing, should be combined and provided in a single 1/3 octave band spectrum
in a file named “xxxx.CORRS.SSR.csv”. These corrections should be determined
in a way that allows them to be ADDED to the aircraft noise SPLs to properly
account for frequency-dependent deviations in response.

2. Broadband corrections – that is corrections that should be applied to all
frequency bands equally – such as gain adjustments and sound calibrator
corrections, as well as system sensitivity “drift” corrections (obtained by
averaging or interpolating between sensitivity calibrations performed in the
field before and after aircraft noise measurements) should be combined and
applied as a script input to the BADJER module.

29SEP2017

16

APPENDIX 1 - SuperFAR Module Reference

This appendix contains information and specifications on each of the implemented SuperFAR
modules. Included in this reference are brief descriptions of the modules’ functionality, information
about processing options, suggested sequences of operation, and the names of all inputs and
outputs, including filespecs (path and filename), variables, and control options.

Alphabetical listing of all currently-implemented SuperFAR modules:

a. ARP866A (Calculation of atmospheric absorption coefficients – alphas – per SAE ARP866A);
b. BADJER (Background noise Adjuster);
c. EPNLCalc (Effective Perceived Noise Level Calculations);
d. GeoCalc (test-day aircraft noise Geometry Calculations);
e. Integrated (Integrated procedure for adjustment to reference conditions);
f. Metrix (Metrics calculations from 1/3 octave band SPLs);
g. ReAvg (Re-averaging – simulation of slow timing to linear SPLs);
h. ReConstruct (Re-Construction of masked SPLs);
i. RefGeo (Reference condition aircraft noise Geometry);
j. SimpleStats (Basic Statistics for single-event levels for multiple events);
k. Simplified (Simplified procedure for adjustment to reference conditions);
l. SPoinTrkIn (Single-Point Tracking data Input – to obtain TXYZ history of aircraft position);
m. SPoinTrkOut (Single-Point Tracking data Output – to obtain single-point tracking descriptors

from TXYZ time-history);
n. SSPDCalc (Calculation of test-day soundspeed, based on average temperature);
o. SSPDTemp (Calculation of average test-day temperature for soundspeed calculation);
p. TDMet (Test-Day Meteorological data – obtains cumulative Test-Day 1/3 octave band

alphas);

29SEP2017

17

a. ARP866A –

• Calculates atmospheric absorption coefficient - “alpha” - for a specified frequency
based on input temperature and relative humidity per the algorithms presented in
SAE Aerospace Recommended Practice ARP866A;

Inputs:

• Temperature (Fahrenheit, Celsius, Kelvin, [Rankine – not yet implemented]);
• Relative Humidity (%);
• Frequency (Hz) – note that if nominal center frequencies for ANSI bands 37 through

40 (5 kHz through 10 kHz) are included as inputs, the nominal lower band-edge for
these bands will be substituted within the module, per ARP866A usage for aircraft
noise certification (If absorption rates for the nominal center frequencies for these
bands are desired, a work-around is to input a frequency value that is 1 Hz higher or
lower than the desired frequency);

• Alpha Type: Select ‘dB1kft’ or ‘dB100m’;

Output:

• Alpha – a single atmospheric absorption coefficient value;

b. BADJER - Background noise Adjuster (combination of MaskMan and ValidAdj) –

• Identifies valid pre-detection background noise levels;
• Establishes masking criteria based on input window values (Defaults: Pre-detection

+ 3 dB; Post-detection + 1 dB);
• Identifies masked aircraft SPLs;
• Generates masking map for spectral time-history;
• Performs energy-subtraction of valid Pre-detection noise from valid aircraft SPLs;
• Applies overall gain and correction adjustments to all aircraft SPLs;
• Applies frequency-dependent system and microphone response corrections to valid

aircraft SPLs.

Inputs:

• postdetectWindow – decibel value (default = 1.0 dB)
• predetectWindow – decibel value (default = 3.0 dB)
• postdetectSSR – filespec for 1/3 octave band spectrum of post-detection (non-

additive) background noise SPLs
• predetectSSR – filespec for 1/3 octave band spectrum of average pre-detection

(can contribute energy to measured noise levels – such as ambient noise at the

29SEP2017

18

microphone site, or thermal electronic noise within the measurement system)
background noise SPLs for a particular run

• STH – filespec for raw, 1/3 octave band aircraft noise spectral time-history
• correctionSSR – filespec for combined 1/3 octave band spectrum of system

response corrections, including microphone pressure and free-field response,
and windscreen insertion loss, along with system frequency response
determined from pink noise or pure-tone testing

• correctionValue – decibel value for overall broadband correction, including any
gain change, sound calibrator corrections, or system sensitivity “drift”
correction.

Outputs:

• validpreSSR – filespec for 1/3 octave band spectrum (.SSR) of valid pre-detection
SPLs

• maskcritSSR – filespec for 1/3 octave band spectrum (.SSR) of masking criteria
SPLs

• badjerSTH – filespec for 1/3 octave band spectral time history (.STH) after all
steps of BG noise adjustment have been performed

• badjerMap – filespec for intermediate masking map (.MAP) after all steps of BG
noise adjustment have been performed

• ambisubSTH – filespec for intermediate 1/3 octave band spectral time history
(.STH) after energy-subtraction has been performed

• ambisubMap – filespec for intermediate masking map (.MAP) after energy-
subtraction has been performed

• gainadjSTH – filespec for intermediate 1/3 octave band spectral time history
(.STH) after overall corrections have been applied

c. EPNLCalc – Calculates EPNL from xxxx.MTX.csv file generated by Metrix module:
• Identifies the record having the maximum value for each user-selected metric
• Identifies the first and last 10 dB-down points (the limits of the Noise Duration)

for each user-selected metric
• Identifies any secondary peaks (PNLT values that are within 2 dB of the

maximum PNLT value)
• Determines if a bandsharing condition is present and, if so, applies a

bandsharing correction to the maximum PNLT value prior to energy integration
• Determines Effective Interval for each spectrum, based on spectrum timestamps
• Integrates the PNLT time-history over the noise duration (integrates each other

user-selected metric over its own noise duration)

29SEP2017

19

• Computes EPNL from PNLT using a reference duration of 10 seconds (Computes
integrated values for other metrics using a reference duration of 1 second,
except for PNL, where a 10 second reference duration is also used.)

• NOTE: Metrix module must have been run on spectral time-history prior to
running EPNLCalc.

Inputs:

• InputMTX – the input metrics time-history file (.MTX)
• Comments – Provide a comment to appear in the output file header (no

commas)

Outputs:

• epnlMTX (.MTX)
• EPNL (.RPT)

Note: This module is also called from Integrated, for use in determining Integrated
Reference Condition EPNL.

d. GeoCalc - Geometry Calculation

Calculates test-day aircraft noise emission geometry relative to the microphone of interest.

Inputs:

• PTH – Position-Time History file for event of interest (.PTH)
• STH – Aircraft noise spectral time-history file, in the example script, the final output

file from the Badjer module (.STH) – this data set is used to obtain measurement
time for each spectrum

• MIC – Microphone coordinates and height (.MIC)
• SPO –Single-Point track information (.SPO)
• SoundSpeed – The speed of sound, as calculated by the SSPDCalc module
• NOTE: A position time-history of TXYZ and a spectral time-history, complete with

Tm(k) measurement “timestamps” must be available prior to running this module.

Outputs:

• GTH – Geometry time-history file (.GTH)

e. Integrated – Adjusts test-day noise data to reference conditions using the integrated
method defined in Annex 16 Appendix 2 and part 36 Appendix A.

29SEP2017

20

NOTE: Full test-day processing, including a test-day EPNL and metric time-history, as
well as test and reference day noise geometry must be available prior to running this
module.

Inputs:
• tdSTH – the final test-day SPL spectral time-history data
• tdMAP – the map associated with the final test-day SPLs
• tdATH – the test-day atmospheric absorption coefficients (.ATH alpha time-history)
• tdALF – same as ATHData, but a single spectrum of alphas (.ALF)
• refALF – the reference condition atmospheric absorption coefficients (single

spectrum) obtained using ARP866A algorithms and 25°C/70% RH pair
• tdEPNL – the test-day EPNL report
• refGTH – the test-day and reference condition noise geometry time-history
• Flags to select desired metrics:

o AFlag – Logical value: when TRUE, includes ANSI A-weighted metric
o CFlag– Logical value: when TRUE, includes ANSI C-weighted metric
o DFlag– Logical value: when TRUE, includes ANSI D-weighted metric
o OAFlag – Logical value: when TRUE, include unweighted metric
o PFlag – Logical value: when TRUE, include PNL metric (required for EPNL)
o TFlag – Logical value: when TRUE, include PNLTM metric (required for EPNL)

• Process-control flags:
o TCB40Flag – Logical value: when TRUE, perform tone correction through

band 40 (Otherwise stops tone-correction at LGB)
o NoRoundFlag – Logical value: when TRUE, do not round SPLs to 0.1 dB

before tone correction (ETM Guidance suggests rounding SPLs to 0.1 dB -
within the tone-correction process only – in order to ameliorate artificial
sensitivity to very small differences in 1/3 octave band SPLs)

o HelicopterFlag – Logical value: when TRUE, start tone correction at 50 Hz
instead of 80 Hz

o TCLowBand – Optional lower limit for tone-correction when eliminating
pseudotones: ANSI/ISO band number for lowest band to be included.
(Replacement for TC1KFlag, which used to switch hard-wired B30 for
elimination of p-tones).

Outputs:

• epnlMTX – the metrics time-history for the reference condition data set
• refSTH – the reference condition SPL spectral time-history
• EPNL – the reference condition EPNL obtained using the integrated method

29SEP2017

21

f. Metrix – Computes metric values for each record in a spectral time-history (.STH)
i. Applies selected frequency-weighting to each one-third octave spectrum
ii. Calculates broadband level for each selected weighting

iii. If selected, calculates Perceived Noise Level (PNL), Tone-Correction (TC), and
PNLT, saving them to a metrics time-history file (.MTX)

iv. Compares Masking and adjustment codes from the .MAP files for individual
bands in each spectrum to criteria provided in the Background Noise
Adjustment Procedure, which Volpe developed for AC36-4C and the ETM.

v. Generates NVR (Non Valid Record) code for each spectrum, and saves them in
the .MTX file.

• NOTE: A spectral time-history, complete with Tm(k) measurement “timestamps” must
be available prior to running this module. In some processes, this module may be run
more than once, for example prior to and subsequent to simulating slow time-
averaging.

Inputs:
• STH – the SPL spectral time-history to obtain metrics for
• Map – the associated map data
• Flags to select desired metrics:

o AFlag – Logical value: when TRUE, includes ANSI A-weighted metric
o CFlag– Logical value: when TRUE, includes ANSI C-weighted metric
o DFlag– Logical value: when TRUE, includes ANSI D-weighted metric
o OAFlag – Logical value: when TRUE, include unweighted metric
o PFlag – Logical value: when TRUE, include PNL metric (required for EPNL)
o TFlag – Logical value: when TRUE, include PNLTM metric (required for EPNL)

• Process-control flags:
o TCB40Flag – Logical value: when TRUE, perform tone correction through

band 40
o NoRoundFlag – Logical value: when TRUE, do not round SPLs to 0.1 dB

before tone correction
o HelicopterFlag – Logical value: when TRUE, start tone correction at 50 Hz

instead of 80 Hz
o TCLowBand – Optional lower limit for tone-correction when eliminating

pseudotones: ANSI/ISO band number for lowest band to be included.
(Replacement for TC1KFlag, which used to switch hard-wired B30 for
elimination of p-tones).

• Outputs:
• MTX – the metrics time-history for the input data set

29SEP2017

22

g. ReAvg – simulation of slow time-averaging –

• Applies simulated slow time-response weighting to data obtained using linear averaging

in the analyzer using one of two methods: continuous or multi-sample running average
• NOTE: This module can be run at various points in the process. If it is performed after

determination of test-day noise geometry, it may be necessary to rerun GeoCalc with
the newly-obtained slow spectral time-history in order for reconstruction of masked
SPLs and/or adjustment of test-day SPLs to reference conditions.

Inputs:

• inputSTH – filespec for linear 1/3 octave band spectral time-history (.STH)
• input_MapData – filespec for masking and adjustment map (.MAP) for linear data
• AveragingMethod – enumerated input:

• ‘CONTEXPO’ – continuous exponential function
• ‘4S100’ – four-sample running average, with coefficents that sum to 100%
• ‘4S95’ – [DEPRECATED] four-sample running average, with coefficients that sum

to 95% (Was developed for a particular hardware analyzer from the 1980’s)
• TimeStamp – enumerated input:

• ‘ICAOSLO’ – current Annex and part 36 specification: time for slow average is
assigned to the instant 0.75 seconds prior to the output of the most recent
linear sample within the average

• ‘OLDSLO’ – obsolete part 36 specification for midpoint of the notional two-
second averaging period

• ‘START’ – start of the linear sample
• ‘MIDPT’ – [DEPRECATED] mid-point of the averaging period (Still applies for

linear data; would have been 1.0 seconds prior to the output of the most recent
sample within the average for slow data)

• ‘END’ – output time of the linear sample
Outputs:

• outputSTH – filespec for slow 1/3 octave band spectral time-history (.STH)
• outputMap – filespec for slow masking and adjustment map (.MAP)

h. Reconstruct – Performs Reconstruction of masked SPLs
• Performs averaging of adjacent SPLs for a single masked LF SPL
• Performs frequency-extrapolation from highest-frequency valid SPL for HF SPLs

(up to 7 highest-frequency bands masked)
• Performs time-extrapolation from nearest-in-time valid SPL in a particular HF

band (7-12 highest-frequency bands masked)
• NOTE: Test-day Noise geometry and atmospheric absorption coefficients

(alphas) must be available prior to running this module.

29SEP2017

23

Inputs:

• TXRec [optional] – default: 1 – recnum for spectrum to be used as the center point
for time-extrapolation

•
• TXCType [optional] – method of identifying center for timex (‘Slice’ , or ‘Spectrum’)
• VCAF03Flag – default: TRUE - Logical value: When TRUE (default), uses Volpe 2003

method (same as ICAO ETM method); uses LGB concepts and assumes flat aircraft
spectrum at a distance of 60 meters from the source under reference atmospheric
conditions

• AC364BFlag – default: FALSE - Logical value: when TRUE, uses the frequency
extrapolation method provided in AC36-4B, spectrum flat at zero distance from the
source.

• FixedSlopeFlag – default: FALSE - Logical value: when TRUE, applies a fixed slope in
dB per one-third octave band

• Use Masked Flag – Logical value: when TRUE, uses the masked value when a masked
aircraft SPL is less than the reconstructed value.

• BirdBugFlag – Logical value: when TRUE, allows use to select a particular band to
reconstruct in a special manner when many records have contamination in a single
band due to buzzing or chirps. (Not yet implemented).

• TXOutwardFlag [optional] – default: TRUE – Logical value: when TRUE, searches
inward toward the Maximum SPL in a band for a valid SPL.

• AvAdjFlag – Logical value: when TRUE, allows the reconstruction of single, masked,
low-frequency band SPLs by averaging the SPL values of the adjacent bands.

• FreqXFlag – Logical value: when TRUE, allows reconstruction of masked high-
frequency bands by frequency-extrapolation.

• TimeXFlag – Logical value: when TRUE, allows reconstruction of masked high-
frequency bands by time-extrapolation.

• ffSR – distance value: when using the ETM frequency extrapolation method, provide
the “free-field” distance (defaults to 60m).

• inputSTH – input test-day SPL time-history file (.STH) – identification of masked SPLs
must be available (BADJER must have already been run), and test-day noise
geometry and cumulative alphas must be available

• inputMap – the associated masking and adjustment map file (.MAP)
• inputGTH – test-day aircraft noise geometry time-history file (.GTH)
• tdATH – test-day atmospheric absorption coefficients (“alphas”) as an alpha time-

history (.ATH) with a separate spectrum of alphas for each acoustic data record in
the .STH file.

• tdALF – test-day atmospheric absorption as a single spectrum (.ALF)

29SEP2017

24

• ffALF – reference condition alphas to be used for propagation effects over the free-
field distance of 60m (.ALF)

Outputs:

• OutputSTH – final output combining valid SPLs and SPLs reconstructed using all
methods

• OutputMap – the map for the final Reconstruct SPL output
• AvgAdjSTH – diagnostic output: includes valid SPLs and SPLs that have been

reconstructed using the average adjacent method
• AvgAdjMap – the associated map for valid SPLs and SPLs reconstructed using the

average adjacent method
• FreqSTH – diagnostic output: includes valid SPLs and frequency-extrapolated SPLs
• FreqMap – the associated map for valid SPLs and SPLs reconstructed using the

frequency-extrapolation method
• TimeSTH - diagnostic output: includes valid SPLs and time-extrapolated SPLs
• TimeMap – the associated map for valid SPLs and SPLs reconstructed using the time-

extrapolation method

i. RefGeo – Calculates reference condition noise geometry relative to the reference
microphone based on test-day acoustic emission angle single-point reference track
information:

• Calculates the reference condition emission coordinates, sound propagation
distances, reception times, and effective intervals

• See ICAO ETM Vol. I, Chapter 4, Section 4.3.1.2
• Assumes that test-day noise geometry has already been obtained by running

GeoCalc

Inputs:

• SPO (.SPO) [optional] – single-point track descriptors for test-day noise
geometry (if not available in SPO file, then can be provided as individual inputs
in script)

• tdSTH (.STH) – test-day SPL time-history, used to obtain test-day spectrum
measurement times

• tdGTH (.GTH) – test-day noise geometry
• TOHR – time string input: the reference time at overhead as “hh:mm:ss.sss”
• ZOHR – distance input (feet, meters): the reference condition aircraft height

above the ground at overhead

29SEP2017

25

• YMICR – distance input (feet, meters): the lateral reference microphone
horizontal offset from the reference ground track (typically 150m or 450m – 0
for centerline)

• VGR – speed input: the reference condition groundspeed (‘KTS’, “MPH’, “KMH’,
‘FPS’, ‘M/S’)

• RGAMMA – degrees input: the reference condition climb/descent angle
• TOH – test day time at overhead [only required if no .SPO file provided]
• ZOH – test day height at TOH [only required if no .SPO file provided]
• VG – test-day groundspeed [only required if no .SPO file provided]
• GAMMA – test-day climb/descent angle [only required if no .SPO file provided]
• CPA – test-day closest-point-of-approach [only required if no .SPO file provided]

Outputs:

• refGTH (.GTH) –test-day and reference condition noise geometry time-history

j. SimpleStats – performs simple statistical functions on noise levels from a group of events,
including average level, standard deviation and 90% confidence interval per the guidance in
ICAO’s ETM, Vol. I.

NOTE: This module is typically run after EPNL (or other final noise metric) has been
computed for a series of events.

Inputs:

• StatMethod – enumerated selection:
o ‘clustered’ – for measured data
o ‘regressed’ – for data obtained analytically for similar conditions

• K – when method is “regressed”, enumerated selection for type of regression:
o ‘1’ – linear
o ‘2’ – quadratic
o ‘3’ - cubic

• data – filespec for input of user-compiled table of event IDs and associated
noise levels

Outputs:
• report – filespec for output – values for average level, standard deviation, 90%

confidence interval, and deltas and squared deltas

29SEP2017

26

k. Simplified – Adjusts test-day data to reference conditions using the simplified method

• Adjusts 1/3 octave band SPLs in the test-day Maximum PNLT spectrum (and any
secondary peaks within 2 dB of PNLTM) to reference conditions accounting for
differences in test & reference sound propagation distances and test &
reference atmospheric absorption. (Actually adjusts every spectrum)

• Computes the following simplified adjustment terms:
1. DEL1 – the difference in dBPNLT between PNLTMR and the test day

PNLTM (includes test-day delta for bandsharing in both values)
2. DELPEAK – an adjustment to DEL1 if any of the secondary peaks within 2

dB of PNLTM adjusted to a higher level than the PNLTM spectrum
3. DEL2 – A duration adjustment for EPNL accounting for the differences in

test & reference speeds and test & reference sound propagation
distances

4. DEL3 – a user-input source noise EPNL adjustment
• Computes the simplified reference condition EPNL by adding each of the

simplified adjustment terms to the test-day EPNL
• NOTE: Requires that test-day process has been completed, as well as RefGeo,

prior to execution of Simplified
Inputs:

• tdSTH - Test-day spectral time-history (.STH)
• tdMAP – map file associated with the test-day STH (.MAP)
• tdALF –single spectrum of test-day alphas (.ALF)
• tdATH – alpha time-history of test-day alphas (.ATH)
• refALF – spectrum of reference condition alphas (.ALF)
• tdEPNL – information about test-day EPNL (.EPNL.RPT)
• refGTH – Noise geometry time-history for test-day and reference conditions

(REF.GTH)
• tdMTX – Test-day EPNL metrics time-history (EPNL.MTX)
• VG – average test-day groundspeed
• VGR – reference condition groundspeed
• DEL3 – Source noise adjustment (determined externally)
• Flags to select desired metrics:

o AFlag – Logical value: when TRUE, includes ANSI A-weighted metric
o CFlag– Logical value: when TRUE, includes ANSI C-weighted metric
o DFlag– Logical value: when TRUE, includes ANSI D-weighted metric
o OAFlag – Logical value: when TRUE, include unweighted metric
o PFlag – Logical value: when TRUE, include PNL metric (required for

EPNL)
o TFlag – Logical value: when TRUE, include PNLTM metric (required for

EPNL)

29SEP2017

27

• Process-control flags:
o TCB40Flag – Logical value: when TRUE, perform tone correction through

band 40
o NoRoundFlag – Logical value: when TRUE, do not round SPLs to 0.1 dB

before tone correction
o HelicopterTCFlag – Logical value: when TRUE, start tone correction at 50

Hz instead of 80 Hz
o TCLowBand – Optional lower limit for tone-correction when eliminating

pseudotones: ANSI/ISO band number for lowest band to be included.
(Replacement for TC1KFlag, which used to switch hard-wired B30 for
elimination of p-tones).

Outputs:

• refSTH – reference condition spectral time history (REF.STH)
• outputMTX – reference condition metrics time history (REF.MTX)
• refEPNL – simplified EPNL report (SIMP.REF.RPT)

l. SPoinTrkIn –

• Calculates a straight line vector and generates a Position Time History (PTH) file from
Single-Point Track Descriptor inputs.

• NOTE: if only single-point tracking data are available for a particular event, SPoinTrkIn
must be run prior to the calculation of test-day noise geometry using GeoCalc.

Inputs:

• TOH – Time at OverHead – the moment in time at which the aircraft is either
directly overhead or abeam of the microphone. The position along the X axis at this
moment, XOH, is assumed to be zero:

o Note that TOH can be entered as separate hours, minutes, and seconds, or
as total seconds elapsed since midnight;

• Yoff – The lateral offset from the reference flight track at TOH;

• AltOH – The aircraft height above the ground at TOH;

• GAMMA – The average climb/descent angle of the aircraft flight path (Note that per
recent updates to Annex 16 and the ETM, the name for this angle is now “GAMMA”.
Previously, Volpe used “PHI”, as well as “CD”, and some documentation may still
reflect this):

o Note that GAMMA can be entered as an angle (when input_PHI_Flag is
TRUE), or as a gradient slope percentage (when input_CDSlope_Flag is

29SEP2017

28

TRUE), or as individual “Rise” and “Run” values (When
input_CDRiseRun_Flag is TRUE);

• CHI – The average horizontal cross-track angle of the aircraft flight path (Note that

per recent updates to Annex 16 and the ETM, the name for this angle is now “CHI”.
Previously, Volpe used “CYang”, as well as “GAMMA” – [awkward] – and some
documentation may still reflect this):

o Note that CHI can be entered as an angle (when input_CYAng_Flag is TRUE),
or as a gradient slope percentage (when input_CYSlope_Flag is TRUE), or as
individual X and Y values (When input_CYYYX_Flag is TRUE);

• GSPD – The average groundspeed of the aircraft along the flight path:

o Note that Groundspeed can be entered directly when input_GSPD_Flag is
TRUE, or speed along the flight path (“VSPD”) can be entered if
input_GSPD_Flag is FALSE;

• StartTOD – The time-of-Day for the first TXYZ record in the output PTH:

o Note that StartTOD can be entered as separate hours, minutes, and
seconds, or as total seconds elapsed since midnight;

• EndTOD – The time-of-Day for the last TXYZ record in the output PTH:

o Note that EndTOD can be entered as separate hours, minutes, and seconds,
or as total seconds elapsed since midnight;

• TInt – the time interval between TXYZ records in the output PTH – defaults to 0.5

seconds
• input_PHI_Flag – [default: TRUE] when TRUE, enter GAMMA as an angle in degrees
• input_CDSlope_Flag – [default: FALSE] when TRUE, enter GAMMA as a vertical

gradient slope percentage
• input_CDRiseRun_Flag – [default: FALSE] when TRUE, enter GAMMA as separate

“rise” (vertical Z-axis) and “run” (horizontal X-axis) values
• input_CYAng_Flag – [default: TRUE] when TRUE, enter CHI as angle in degrees
• input_CYSlope_Flag – [default: FALSE] when TRUE, enter CHI as horizontal gradient

slope percentage
• input_CYYYX_Flag – [default: FALSE] when TRUE, enter CHI as separate “rise”

(horizontal Y-axis) and “run” (horizontal X-axis) values
• input_GSPD_Flag – [default: TRUE] when TRUE, input groundspeed; when FALSE,

enter Vector speed

Outputs:

• PTHData – Position Time History file (Xxxx.PTH.csv)

29SEP2017

29

m. SPoinTrkOut – Single Point Track Output
• Generates average single-point track geometry values from an input Position Time-

History or Geometry-Time History. Run after SPoinTrkIn in order to generate an .SPO
file that contains the Single-Point Track information in a form that subsequent
programs can read.

• NOTE: Should be run on test-day noise geometry time history prior to calculation of
reference condition noise geometry using RefGeo.

Inputs:

• PTH – [preferred] filespec for Position-Time History (.PTH)
• GTH – [optional] filespec for Geometry-Time History (.GTH)
• MTH – [optional when a GTH file is input] metrics time-history (.MTX)
• MIC – filespec for microphone coordinates and height (.MIC)
• AvStart – [optional input when using .GTH and .MTX inputs] the start record for the

averaging process
• AvEnd – [optional input when using .GTH and .MTX inputs] the end record for the

averaging process

Outputs:

• SPO – filespec that contains Single-Point Tracking information (.SPO)

n. SSPDCalc – Sound Speed Calculator
• Computes the speed of sound in FPS from input temperature using user selection of

one of five available methods.
• This module was previously integrated in the code for GeoCalc, but has now been

isolated as a separate, independent module.

Inputs:

• Temperature – Average test-day temperature to be used in calculating test-day
soundspeed for sound propagation (degrees Celsius or Fahrenheit).

• SSPDCalcType – Soundspeed calculation method selector
o ICAO_FIXED (method provided in current ETM, based on Celsius and Kelvin):

1135.5 ∗ �[(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ℃) + 273.15] 298.15⁄ 𝐹𝐹𝐹𝐹𝐹𝐹

o RICKLEY (Older validations may have used this. Based on Fahrenheit and
Rankine):

29SEP2017

30

49.025 ∗ �(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ℉) + 459.67 𝐹𝐹𝐹𝐹𝐹𝐹

o ICAO_TM (erroneous equation provided in older version of ETM):

1125.9 ∗ �[(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ℃) + 273.15] 293.15⁄ 𝐹𝐹𝐹𝐹𝐹𝐹

o SUPR_EZ (Dave Read’s very simple approximation, based on Beranek’s EZ
version; pretty good answers over range of temperature used for aircraft
noise certification):

[1050.9 + 1.092 ∗ (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ℉)] 𝐹𝐹𝐹𝐹𝐹𝐹

o BARANEK_EZ (Leo Beranek’s simple approximation):
[(1053.5 + 1.067 ∗ (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ℉)] 𝐹𝐹𝐹𝐹𝐹𝐹

 Outputs:

• SoundSpeed [output as global variable] – Speed of sound based on selected
calculation method. This variable is used as the SoundSpeed input to the GeoCalc
module.

o. SSPDTemp – Calculates average Test-Day temperature for use in sound speed calculation
• Computes an average test-day temperature in one of seven methods, from either

ETOD Met data or pre Met and post Met data sets.

Inputs:

• mode – method for determining average test-day temperature:
o 1 – Preferred (Requires ETOD Met): Interpolate ETOD temperature over

height to height of aircraft (ZOH or ZPNLTM), then averages ETOD temps at
aircraft height and 10m;

o 2 – ETOD Approximation (Requires ETOD Met): Use ETOD temperature at
closest Met height to aircraft height; average it with ETOD 10m
temperature;

o 3 – Preferred Alternate (Requires pre & post Met files): Interpolates pre &
post Met temperatures over height to height of aircraft (ZOH or ZPNLTM).
Then interpolates aircraft height temperatures and 10m temperatures over
time to ETOD; finally, averages ETOD Temperature at aircraft height and
ETOD 10m temperature;

o 4 – Average Approximation (Requires pre and post Met files): Averages pre
& post Met temperatures at Met height closest to aircraft height, and
averages pre and post Met 10m temperatures; Finally, averages average
temperature at met height closest to aircraft height with average 10m
temperature;

29SEP2017

31

o 5 – ETOD 10m (Requires ETOD Met file): Use ETOD 10m temp directly;
o 6 – ETOD 10m Alternate (Requires pre & post Met files): Interpolate 10m

temperatures over time to ETOD;
o 7 – Average 10m (Requires pre & post Met files): Averages pre and post

10m temperatures;
• Height – aircraft height (either ZOH or ZPNLTM);
• EtodMET – [optional – alternate is to input pre & post Met files] filespec for single

input Met (Temperature and RH% vs. height) file;
• preMET – [optional if not using etodMET file] filespec for input Met file measured

prior to aircraft noise event;
• postMET – [optional if not using etodMET file] filespec for input Met file measured

subsequent to aircraft noise event;

Output:

• SoundSpeedTemp (output to shell only, must be captured as global variable within
script):

This line should follow the call to SSPDTemp, within the calling script:
o SoundSpeedTemp = SSPDTempresult.SSPDAvgTemp

p. TDMet –

• Computes cumulative sound propagation-path atmospheric absorption coefficients
(“alphas”) from measured test-day weather profiles (temperature & relative humidity
vs. height and time).

• Must be run prior to reconstruction of masked SPLs using Reconstruct, or adjustment to
reference conditions using either Simplified or Integrated.

Inputs (Include measured temperature and relative humidity vs. height, at times before and
after the aircraft noise event measurement):

• preMET – T&H vs. height, prior to the event (.MET);

• postMET – T&H vs. height, subsequent to the event (.MET);

• ETOD – The aircraft noise Event Time-Of-Day, a time chosen to represent the event;

• ETODType – An enumerated input. Choices include:
o ‘TOH’ – Time at OverHead – the moment when the aircraft is directly over or

abeam of the microphone, X=0.0;
o ‘TCPA’ – Time at Closest Point of Approach – the moment when the aircraft is at

either the notional or actual shortest straight-line distance from the microphone
– When TXYZ data are available, TCPA can be determined by calculating the

29SEP2017

32

slant distance between the aircraft and the microphone for each measured
position, and the time associated with the shortest of these can be chosen.
When a straight-line approximation of the flight path is used, CPA occurs when
the acoustic emission angle is 90 degrees, or when the slant distance between
the aircraft and microphone is normal to the flight path vector;

o ‘TMAX’ – Time when the maximum PNLT spectrum is measured (In some cases,
the emission time for this spectrum is used – the certification requirements and
guidance are not clear: they only reference “time of PNLTM”. Differences should
be extremely minor – in fact, Volpe considers use of TOH or TCPA to be
equivalent to TMAX.);

o ‘OTHER’ – any other time chosen to represent the aircraft noise event time;

• ACHeight – the aircraft height at the “…time of PNLTM…” (- or at TOH or TCPA - Volpe
considers all of these to be equivalent.);

• DistanceUnits [optional – defaults to units used in input files] – select the distance units
to be used in output files (enumerated):

o ‘Feet’;
o ‘Meters’;
o ‘Miles’ (should not be used for this module);
o “NM’ (Nautical miles – should not be used for this module);

• TemperatureUnits[optional] – select the temperature units to be used in output files

(enumerated):
o ‘Fahrenheit’;
o ‘Celsius’;
o ‘Kelvin’;
o ‘Rankine’ [not implemented yet];

• AlfaType [optional] – select the alpha type to be used in output files (enumerated):

o ‘dB100M’ – decibels per 100 meters;
o ‘dB1KFT’ – decibels per 1000 feet;
o ‘dBM’ – decibels per meter;
o ‘dBFT’ – decibels per foot [not implemented yet];

• LayrCrit [optional, defaults to ‘0.5’ dB per 100M if DistanceUnits=”Meters”, or ‘1.6’ dB

per 1000 ft if DistanceUnits = ‘Feet’.] – allows user to input an alternate criterion for
triggering atmospheric layering;

• ForceLay – Logical value; when TRUE, perform layering regardless of LayrCrit

29SEP2017

33

• ForceFull – Logical value; when TRUE, perform full apportioning over sound propagation
path; when FALSE, use simple average of layer alphas;

• SPFlag – Logical value; when TRUE, use single-point (typically 10-meter) alphas (this is
standard for helicopters);

Outputs:

• ETODMet – Measured T & RH vs. height, interpolated over time to ETOD (the aircraft
noise Event Time-Of-Day);

• ETODAlf – 1/3 octave band atmospheric absorption coefficients (“alphas”) for the T&RH

pairs vs. height in ETOD.MET;

• LayrALF – 1/3 octave band alphas at the center of each atmospheric layer – used in

computation of cumulative sound propagation path alphas which are used for
reconstruction of masked data and for adjustment of measured test-day SPLs to
reference conditions;

• AvgAlpha – The final cumulative sound propagation path alphas;

• FullAvgAlpha – Fully-apportioned cumulative alphas;

• SimpleAvgAlpha – “simple” cumulative alphas from layers;

• TwoPointAvgAlpha – 2-point cumulative alphas;

• OnePointAvgAlpha – single-point (10-meter) alphas;

29SEP2017

34

APPENDIX 2 - SuperFAR Data File Specifications

For SuperFAR code to execute properly, input data files must be provided in plaintext, comma-separated-values format, with the header and
data structures as specified in the following pages. The following file types are described:

1. Xxxx.ALF.csv – Atmospheric absorption coefficient (Alphas) single spectrum – can have multiple single-spectrum entries
representing different heights

2. Xxxx.ATH.csv – Alpha Time-History – contains a single spectrum of alphas for each spectral record in the STH file
3. Xxxx.EPNL.MTX.csv – special EPNL Metrics Time-History data
4. Xxxx.EPNL.RPT.csv – EPNL report data
5. Xxxx.GTH.csv – Noise Geometry Time-History data – contains one geometry record for each spectral record in the STH file
6. Xxxx.Integ.REF.EPNL.RPT.csv – Integrated Method Reference EPNL Report data
7. Xxxx.MAP.csv – masking / adjustment map data (incl. masking/adjustment codes) – includes one map row for each spectral

record in the STH file
8. Xxxx.MET.csv – Meteorological Profile (Temp & RH vs Height)
9. Xxxx.MIC.csv – Microphone coordinate data
10. Xxxx.MTX.csv – Metrics Time-History data – contains one row of broadband metrics for each spectral record in the STH file
11. Xxxx.PTH.csv – Position Time-History data – records are independent of spectral records in STH file
12. Xxxx.REF.GTH.csv – Reference condition noise geometry time history – contains one geometry record for each spectral

record in the STH file
13. Xxxx.Simp.REF.EPNL.RPT.csv – Simplified Method Reference EPNL Report data
14. Xxxx.SPO.csv – Single-Point Tracking data report
15. Xxxx.SSR.csv – Single spectrum record of 1/OB SPLs
16. Xxxx.STATS.RPT.csv – Statistical data results report
17. Xxxx.STH.csv – 1/3 octave band spectral time-history

Note: the order of file Header fields is not important to SuperFAR. All modules can identify required header info from the Header Labels
themselves. Also note that in the following file references, some header labels are presented in light gray text. These labels are either optional or
in some cases, deprecated. Further, additional Header Fields beyond those presented in this reference may be found in some output files.

29SEP2017

35

29SEP2017

36

1) Xxxx.ALF.csv – Atmospheric Absorption coefficients (Alphas) data

Description:
A single spectrum of atmospheric absorption coefficients (“alphas”) in units of dB per 1000 feet (“dB1KFT”), dB per 100 meters
(“dB100M”), dB per foot (“dBFT”), or dB per meter (“dBM”).

Header:

FileType**
FileName**
FileDateTime**
ProjectName**
MicrophoneID**
LAYERFLAG**
AlphaType**
GeneratedBy**
NumberOfGenerationFiles**
OtherRecords**
NumberOfCommentLines**
AlphaUnits**
DistanceUnits**
ETODType**

Column Labels:

TODHH TODMM TODSS Alpha17:50Hz Alpha18:63Hz Alpha19:80Hz Alpha20:100Hz Alpha21:125Hz Alpha22:160Hz

… [continues through Alpha40: 10kHz]

Data:

12 26 30.75 0.029528 0.036089 0.045932 0.055774 0.072178 0.091864

29SEP2017

37

29SEP2017

38

2) Xxxx.ATH.csv – Alpha time-history

Description:
A spectral time-history of atmospheric absorption coefficients (“alphas”) in units of dB per 1000 feet (“dB1KFT”), dB per 100 meters
(“dB100M”), dB per foot (“dBFT”), or dB per meter (“dBM”). There should be one spectral record row of alphas for each spectral
record in the acoustic test-day spectral time history data set.

Header:

FileType**
FileName**
FileDateTime**
ProjectName**
MicrophoneID**
LAYERFLAG**
AlphaType**
GeneratedBy**
NumberOfGenerationFiles**
OtherRecords**
NumberOfCommentLines**
All records same as in ALF
file

Column Labels:

TODHH TODMM TODSS Alpha17:50Hz Alpha18:63Hz Alpha19:80Hz Alpha20:100Hz Alpha21:125Hz Alpha22:160Hz

… [continues through Alpha40: 10kHz]

29SEP2017

39

Data:

1 12 26 29.75 0.029528 0.036089 0.045932 0.055774 0.072178 0.091864

2 12 26 30.25 0.029528 0.036089 0.045932 0.055774 0.072178 0.091864

3 12 26 30.75 0.029528 0.036089 0.045932 0.055774 0.072178 0.091864

4 12 26 31.25 0.029528 0.036089 0.045932 0.055774 0.072178 0.091864

5 12 26 31.75 0.029528 0.036089 0.045932 0.055774 0.072178 0.091864

6 12 26 32.25 0.029528 0.036089 0.045932 0.055774 0.072178 0.091864

7 12 26 32.75 0.029528 0.036089 0.045932 0.055774 0.072178 0.091864

8 12 26 33.25 0.029528 0.036089 0.045932 0.055774 0.072178 0.091864

9 12 26 33.75 0.029528 0.036089 0.045932 0.055774 0.072178 0.091864

10 12 26 34.25 0.029528 0.036089 0.045932 0.055774 0.072178 0.091864

11 12 26 34.75 0.029528 0.036089 0.045932 0.055774 0.072178 0.091864

29SEP2017

40

3) Xxxx.EPNL.MTX.csv – special EPNL Metrics Time-History data

Description:
A time-history of broadband noise levels output by the EPNLCalc module. Each row contains information for a single spectral record
in the acoustic test-day spectral time history data set. Metrics to be included are selected using flags in the script. (The user-selected
metrics must also be available in the .MTX input file). This file is similar to the xxxx.MTX.csv file, but contains additional columns for
identification of maximum levels and ten dB-down points. These columns are labelled “AINT”, “DINT”, “OINT”, “PINT”, and “TINT”
for Awt, Dwt, Overall (unweighted), PNL, and PNLT respectively. The “INT” part stands for “Integration labels”. “NVR” stands for
“Non-Valid Record” and if a code exists in this column it indicates that the record is not suitable for inclusion in aircraft noise
certification EPNL calculation.

Header:

FileType**
FileName**
FileDateTime**
ProjectName**
MicrophoneID**
AveragingMethod**
TimeStampType**
AdjustmentCode**
StartTime**
ReferenceTime**
ReferenceTimeType**
TCLowBand**
NoRndFlag**
TCB40Flag**
HeliTCFlag**
PNLTM + Delta Bandshare**
Delta Bandshare**
PNLTM Recnum**

29SEP2017

41

Bands**
GeneratedBy**
NumberOfGenerationFiles**
GenFileName1**
GenFileDateTime1**
OtherRecords**
NumberOfCommentLines**
Test-Day EPNLCalc

Column Labels:

Rec# TODhh TODmm TODss RelTime EFFINT PNL PINT PNLT TINT TONECOR TONEBND LGB NVR

Data:

1 12 26 29.25 -0.25 0.5 96.14385 96.14385 0 30 37 AVG

2 12 26 29.75 0.25 0.5 98.77273 98.77273 0 30 37 AVG

3 12 26 30.25 0.75 0.5 101.4529 101.564 0.111111 37 38 AVG

4 12 26 30.75 1.25 0.5 103.8464 103.8464 0 30 38 AVG

5 12 26 31.25 1.75 0.5 104.4049 104.4938 0.088889 37 38 AVG

6 12 26 31.75 2.25 0.5 105.6265 105.6265 0 30 39 AVG

7 12 26 32.25 2.75 0.5 108.248 F10 108.248 F10 0 30 39
8 12 26 32.75 3.25 0.5 112.2018 112.2018 0 30 40
9 12 26 33.25 3.75 0.5 113.9053 113.9053 0 30 40

10 12 26 33.75 4.25 0.5 114.6499 114.6499 0 30 40
11 12 26 34.25 4.75 0.5 115.059 115.059 0 30 40
12 12 26 34.75 5.25 0.5 116.6315 116.6315 0 30 40
13 12 26 35.25 5.75 0.5 118.187 2ND 118.187 2ND 0 30 40
14 12 26 35.75 6.25 0.5 118.4238 2ND 118.4238 2ND 0 30 40
15 12 26 36.25 6.75 0.5 119.3976 2ND 119.3976 2ND 0 30 40
16 12 26 36.75 7.25 0.5 119.6509 2ND 119.7842 2ND 0.133333 38 40
17 12 26 37.25 7.75 0.5 119.7306 MAX 119.9195 MAX 0.188889 38 40

29SEP2017

42

18 12 26 37.75 8.25 0.5 119.4625 2ND 119.6291 2ND 0.166667 38 40
19 12 26 38.25 8.75 0.5 118.9601 2ND 119.0601 2ND 0.1 38 40
20 12 26 38.75 9.25 0.5 119.09 2ND 119.1122 2ND 0.022222 38 40
21 12 26 39.25 9.75 0.5 118.4034 2ND 118.4145 2ND 0.011111 38 40
22 12 26 39.75 10.25 0.5 117.9098 2ND 117.9098 0 30 40
23 12 26 40.25 10.75 0.5 117.523 117.523 0 30 39
24 12 26 40.75 11.25 0.5 116.7359 116.7359 0 30 39
25 12 26 41.25 11.75 0.5 116.0746 116.0746 0 30 39
26 12 26 41.75 12.25 0.5 115.7101 115.7101 0 30 39
27 12 26 42.25 12.75 0.5 115.183 115.183 0 30 38
28 12 26 42.75 13.25 0.5 114.3039 114.3039 0 30 38
29 12 26 43.25 13.75 0.5 113.4176 113.4176 0 30 38
30 12 26 43.75 14.25 0.5 112.8192 112.8192 0 30 37
31 12 26 44.25 14.75 0.5 112.6094 112.6094 0 30 38
32 12 26 44.75 15.25 0.5 111.5336 111.5336 0 30 37
33 12 26 45.25 15.75 0.5 110.5836 110.5836 0 30 37
34 12 26 45.75 16.25 0.5 109.5513 L10 109.5513 L10 0 30 37
35 12 26 46.25 16.75 0.5 108.6907 108.6907 0 30 37
36 12 26 46.75 17.25 0.5 107.57 107.57 0 30 36
37 12 26 47.25 17.75 0.5 106.3527 106.3527 0 30 36
38 12 26 47.75 18.25 0.5 104.8743 104.8743 0 30 36
39 12 26 48.25 18.75 0.5 103.8074 103.8074 0 30 36
40 12 26 48.75 19.25 0.5 103.3158 103.3158 0 30 36

29SEP2017

43

4) Xxxx.EPNL.RPT.csv – EPNL report data

Description:

Output data related to selected time-integrated metrics, including (if selected) LAE (A-weighted SEL), LDE (D-weighted SEL),
unweighted SEL, Special EPNL without tone-correction, and EPNL (based on PNLT). Includes max level, identification of max time and
record number, identification of first and last 10 dB-down point times and record numbers, and a code to indicate the quality of the
time-integration. Header includes Delta for Bandsharing, as well as individual tone-correction values for the five records centered on
the max record. Each row in the file contains data based on a specific metric.

Note: The column marked “TILE” represents the Time-Integrated Level (i.e., LAE for A-weighting, EPNL for PNLT). “TileDur” is the
integrated noise duration in seconds. “F10” indicates the first 10 dB-down point, and “L10” the last 10 dB-down point.
“10DownCode” identifies whether both 10 dB-down points are valid or whether neither, first-only, or last-only are available.
“2ndPeaks” identifies the number of secondary peaks (records with levels within 2 dB of max) exist.

Header:

FileType**
FileName**
FileDateTime**
ProjectName**
GeneratedBy**
NumberOfGenerationFiles**
GenFileName1**
GenFileDateTime1**
OtherRecords**
NumberOfCommentLines**
TCLowBand**
PNLTM**
DeltaBndShr**
ToneCorr(max-2)**
ToneCorr(max-1)**

29SEP2017

44

ToneCorr(max)**
ToneCorr(max+1)**
ToneCorr(max+2)**
AverageTC**

Column Labels:
M

et
ric

M
ax

M
ax

Re
c

M
ax

Ti
m

eh
h

M
ax

Ti
m

em
m

M
ax

Ti
m

es
s

TI
LE

TI
LE

Du
r

F1
0d

b

F1
0R

ec

F1
0T

im
eh

h

F1
0T

im
em

m

F1
0T

im
es

s

L1
0d

b

L1
0R

ec

L1
0T

im
eh

h

L1
0T

im
em

m

L1
0T

im
es

s

10
Do

w
nC

od
e

2n
dP

ea
ks

Data:

PNLT 119.9195277 17 12 26 37.25 118.1003 14 108.248 7 12 26 32.25 109.5513 34 12 26 45.75 BOTH 8

PNL 119.7306388 17 12 26 37.25 118.0566 14 108.248 7 12 26 32.25 109.5513 34 12 26 45.75 BOTH 9

29SEP2017

45

5) Xxxx.GTH.csv – Noise Geometry Time-History data

Description:
A time-history of test-day noise geometry, including sound propagation distance, sound emission coordinates, and sound emission
angles for acoustic record in the spectral time history.

Note: the values for incidence angle (IncidAng) are set to “66” to indicate that this functionality has not yet been implemented.

Header:

FileType**
FileName**
FileDateTime**
ProjectName**
MicrophoneID**
Microphone(x y z h)**
Microphone Horizontal
Angle**
Microphone Vertical Angle**
SoundSpeed (ft/sec)**
PromptTemperature**
AngleUnits**
AlphaUnits**
DistanceUnits**
TemperatureUnits**
GeneratedBy**
NumberOfGenerationFiles**
GenFileName1**
GenFileDateTime1**
GenFileName2**

29SEP2017

46

GenFileDateTime2**
GenFileName3**
GenFileDateTime3**
GenFileName4**
GenFileDateTime4**
OtherRecords**
NumberOfCommentLines**

Column Labels:

Rec# TmTODhh TmTODmm TmTODss TeTODhh TeTODmm TeTODss Tprope Xe Ye Ze SRe THETAe BETAe IncidAng

Data:

1 12 26 29.25 12 26 26.41 2.842757 -3207.6 132.274 333.2784 3227.174 19.7487 5.856255 66

2 12 26 29.75 12 26 27.09 2.661408 -2994.71 118.3722 385.8598 3021.28 21.15684 7.261037 66

3 12 26 30.25 12 26 27.77 2.482638 -2782.63 104.523 438.2421 2818.244 22.76325 8.863587 66

4 12 26 30.75 12 26 28.44 2.306697 -2571.42 90.73156 490.4061 2618.596 24.60904 10.7049 66

5 12 26 31.25 12 26 29.12 2.134732 -2361.46 77.02121 542.2633 2423.257 26.74319 12.83381 66

6 12 26 31.75 12 26 29.78 1.967418 -2152.96 63.40575 593.7615 2233.174 29.22856 15.31296 66

7 12 26 32.25 12 26 30.44 1.805517 -1946.14 49.90074 644.8421 2049.546 32.14361 18.22052 66

8 12 26 32.75 12 26 31.1 1.651322 -1741.73 36.55296 695.3279 1874.276 35.57699 21.64475 66

9 12 26 33.25 12 26 31.74 1.506444 -1540.24 23.39526 745.0947 1709.416 39.63587 25.69223 66

10 12 26 33.75 12 26 32.38 1.372545 -1342.17 10.46159 794.0143 1557.452 44.43887 30.48068 66

11 12 26 34.25 12 26 33 1.252191 -1148.34 -2.19573 841.8885 1421.528 50.09372 36.11643 66

29SEP2017

47

6) Xxxx.Integ.REF.EPNL.RPT.csv – Integrated Method Reference EPNL Report data

Description:

Output from the Integrated module, and similar to the xxxx.EPNL.RPT.csv file generated by EPNLCalc, this one contains information
about Integrated reference condition EPNL.

Note: The column marked “TILE” represents the Time-Integrated Level (i.e., LAE for A-weighting, EPNL for PNLT). “TileDur” is the
integrated noise duration in seconds. “F10” indicates the first 10 dB-down point, and “L10” the last 10 dB-down point.
“10DownCode” identifies whether both 10 dB-down points are valid or whether neither, first-only, or last-only are available.
“2ndPeaks” identifies the number of secondary peaks (records with levels within 2 dB of max) exist.

Header:

FileType**
FileName**
FileDateTime**
ProjectName**
GeneratedBy**
NumberOfGenerationFiles**
GenFileName1**
GenFileDateTime1**
GenFileName2**
GenFileDateTime2**
GenFileName3**
GenFileDateTime3**
GenFileName4**
GenFileDateTime4**
GenFileName5**
GenFileDateTime5**

29SEP2017

48

GenFileName6**
GenFileDateTime6**
OtherRecords**
NumberOfCommentLines**
TCLowBand**
PNLTM**
DeltaBndShr**
ToneCorr(max-2)**
ToneCorr(max-1)**
ToneCorr(max)**
ToneCorr(max+1)**
ToneCorr(max+2)**
AverageTC**

Column Labels:

M
et

ric

M
ax

M
ax

Re
c

M
ax

Ti
m

eh
h

M
ax

Ti
m

em
m

M
ax

Ti
m

es
s

TI
LE

TI
LE

Du
r

F1
0d

b

F1
0R

ec

F1
0T

im
eh

h

F1
0T

im
em

m

F1
0T

im
es

s

L1
0d

b

L1
0R

ec

L1
0T

im
eh

h

L1
0T

im
em

m

L1
0T

im
es

s

10
Do

w
nC

od
e

2n
dP

ea
ks

Data:

PNLT 113.1923 20 12 26 41.68 114.1206 23.59 105.085 8 12 26 31.11 103.4029 34 12 26 53.82 BOTH 10

PNL 112.9545 20 12 26 41.68 113.9366 23.59 104.9517 8 12 26 31.11 103.4029 34 12 26 53.82 BOTH 10

29SEP2017

49

7) Xxxx.MAP.csv – masking / adjustment map

Description:

Conceived as a “layer” under the spectral time-history data, the map has a 2-character code corresponding to each 1/3 octave band
SPL in the associated .STH file. The first character in each code represents the masking condition, while the second character
indicates the adjustments that have been performed.

Masking codes:
(Appear as first character in two-character map code)
"_" Not masked
"M" Masked by Masking Criterion
"A" Masked by Pre-Detection Noise ("Ambi")
"F" Masked by Post-Detection Noise ("Floor")
"X" Masked (usu appears after averaging but used anytime source of masking is unknown)

Adjust Codes:
(Appear as 2nd character in two-character map code)
"_" None
"C" Frequency-dependent corrections applied

"N"
Energy-subtraction
performed

"A" Average of adjacent SPLs
"F" Frequency-extrapolated value
"T" Time-extrapolated value
"S" Fixed slope or shaping
"B" Special Bird/Bug reconstruction
"R" Reconstructed (other method or unknown)

29SEP2017

50

Examples:

"_N" Not masked; Energy-subtraction applied
"_C" Not masked; frequency-dependent corrections applied
"MF" Masked by masking criterion; reconstructed using frequency-extrapolation
"AA" Masked by pre-detection; Reconstructed by averaging adjacent SPLs
"FT" Masked by post-detection; Reconstructed using time-extrapolation
"__" Not masked; Not adjusted

Header:

FileType**
FileName**
FileDateTime**
ProjectName**
GeneratedBy**
NumberOfGenerationFiles**
GenFileName1**
GenFileDateTime1**
GenFileName2**
GenFileDateTime2**
GenFileName3**
GenFileDateTime3**
GenFileName4**
GenFileDateTime4**
GenFileName5**

29SEP2017

51

GenFileDateTime5**
OtherRecords**
NumberOfCommentLines**

Column Labels:

Rec# B17/50Hz B18/63Hz B19/80Hz B20/100Hz B21/125Hz B22/160Hz

… [continues to B40: 10kHz, then LGB and NVR]

Data:

1 _C _C _C _C _C _C

2 _C _C _C _C _C _C

3 _C _C _C _C _C _C

4 _C _C _C _C _C _C

5 _C _C _C _C _C _C

6 _C _C _C _C _C _C

7 _C _C _C _C _C _C

8 _C _C _C _C _C _C

9 _C _C _C _C _C _C

10 _C _C _C _C _C _C

11 _C _C _C _C _C _C

29SEP2017

52

8) Xxxx.MET.csv – Meteorological data profile

Description:
Temperature and Relative Humidity vs. height for a single meteorological measurement (i.e., “met flight’). Individual times can be
associated with each height entry. Temperature units can be selected as Celsius, Fahrenheit, Kelvin, or Rankine. Relative humidity
values must be provided as %. Heights can be provided in feet or meters. Heights should have already been normalized to either 100
feet or 30 meters, depending on distance units used. Absorption coefficient units and distance units should match. (i.e., “feet’ and
“dBFT’ or ‘dB1KFT’) a separate MET file should be provided for prior to and subsequent to each series of aircraft noise events to be
processed.

Header:

FileType**
FileName**
FileDateTime**
ProjectName**
DistanceUnits**
TemperatureUnits**

Column Labels:

height todhh todmm todss temp rh

Data:

32.8 12 21 44.444 67.71 72.777
100 12 21 57.2 70.7 65.445
200 12 22 5.313 72.222 60.001
300 12 22 8.99 73.333 58.585
400 12 22 13.13 70.7 58.1

9) Xxxx.MIC.csv – Microphone coordinate data

29SEP2017

53

Description:

An input file containing information about the microphone and site. Note that the microphone angles are currently place-holders for
incidence angle calculations that have not yet been implemented.

Header:

FileType**
FileName**
FileDateTime**
ProjectName**
MicrophoneID**
Units**
GeneratedBy**
NumberOfGenerationFiles**
OtherRecords**
NumberOfCommentLines**

Column Labels:

X Y Z Height MVertAng MHorzAng

Data:

0 0 0 4 0 0

29SEP2017

54

10) Xxxx.MTX.csv – Metrics Time-History data – contains one row of broadband metrics for each spectral record in the STH file

Description:

A time-history of broadband noise levels output by the Metrix module. Each row contains information for a single spectral record in
the acoustic test-day spectral time history data set. Metrics to be included are selected using flags in the script. This file is similar to
the xxxx.EPNL.MTX.csv file generated by EPNLCalc, but does not contain columns for identification of maximum levels and ten dB-
down points. The column labelled “LGB” contains the ANSI/ISO band number for the Last Good Band used in the background noise
adjustment methodology.

Header:

FileType**
FileName**
FileDateTime**
ProjectName**
MicrophoneID**
AveragingMethod**
TimeStampType**
AdjustmentCode**
StartTime**
ReferenceTime**
ReferenceTimeType**
TCLowBand**
NoRndFlag**
TCB40Flag**
HeliTCFlag**
Bands**
GeneratedBy**
NumberOfGenerationFiles**

29SEP2017

55

GenFileName1**
GenFileDateTime1**
GenFileName2**
GenFileDateTime2**
OtherRecords**
NumberOfCommentLines**

Column Labels:

Rec# TODhh TODmm TODss RelTime PNL PNLT TONECOR TONEBND LGB NVR

Data:

1 12 26 29.25 -0.25 96.14385 96.14385 0 30 37 AVG

2 12 26 29.75 0.25 98.77273 98.77273 0 30 37 AVG

3 12 26 30.25 0.75 101.4529 101.564 0.111111 37 38 AVG

4 12 26 30.75 1.25 103.8464 103.8464 0 30 38 AVG

5 12 26 31.25 1.75 104.4049 104.4938 0.088889 37 38 AVG

6 12 26 31.75 2.25 105.6265 105.6265 0 30 39 AVG

7 12 26 32.25 2.75 108.248 108.248 0 30 39
8 12 26 32.75 3.25 112.2018 112.2018 0 30 40
9 12 26 33.25 3.75 113.9053 113.9053 0 30 40

10 12 26 33.75 4.25 114.6499 114.6499 0 30 40
11 12 26 34.25 4.75 115.059 115.059 0 30 40
12 12 26 34.75 5.25 116.6315 116.6315 0 30 40
13 12 26 35.25 5.75 118.187 118.187 0 30 40
14 12 26 35.75 6.25 118.4238 118.4238 0 30 40

11) Xxxx.PTH.csv – Position Time-History data

Description:

29SEP2017

56

This file contains a time-history of measured aircraft position in the local coordinate TXYZ system. There is an assumption that the
centerline microphone is located at the origin (0,0,0,), but the equations for noise geometry calculations should be able to
accommodate other situations. The time of each position measurement, Tp, should be provided in the common timebase used for
acoustical measurements and meteorological measurements. The data sets for this file can be obtained directly form TSPI system
outputs or can be generated for an average straight-line flight path by inputting single-point tracking data elements (As might be
obtained from photo-positioning or other methods) to the SPoinTrkIn module.

Note that the PTH records and their timestamps are independent of spectral records in the spectral time-history.

Header:

FileType**
FileName**
FileDateTime**
ProjectName**
Units**
GeneratedBy**
NumberOfGenerationFiles**
OtherRecords**
NumberOfCommentLines**

Column Labels:

TODHH TODMM TODSS X Y Z

Data:

12 26 20 -5209.59 263.0034 -161.184

12 26 20.5 -5053.36 252.8017 -122.598

12 26 21 -4897.13 242.6 -84.0118

12 26 21.5 -4740.91 232.3983 -45.4256

29SEP2017

57

12 26 22 -4584.68 222.1966 -6.83938

12 26 22.5 -4428.45 211.995 31.74685

12 26 23 -4272.22 201.7933 70.33308

29SEP2017

58

12) Xxxx.REF.GTH.csv – Reference Condition Noise Geometry Time-History data

Description:
A time-history of test-day and reference condition noise geometry, including test and reference sound propagation distances, sound
emission coordinates, and sound emission angles for each acoustic record in the spectral time history. Tm is the acoustic
measurement time (or timestamp), while Te is the calculated time of emission of the sound that was measured at Tm. (“Retarded”
time, which accounts for the time it takes for sound propagation between the aircraft and the microphone). Xe, Ye, Ze are the
emission coordinates of the aircraft at Te. SR is the Slant Range, or straight line sound propagation distance between the aircraft and
the microphone. THETA is the three-dimensional sound emission angle (angle between the aircraft direction of flight and the straight
line sound propagation path between the aircraft and the microphone). BETA is the two-dimensional sound elevation angle (vertical
angle above the microphone height to the aircraft height at Te.) Tr is the reference measurement time, based on the reference
condition flight path and the reference condition soundspeed. EFFINT is the effective interval in seconds for a particular record, to
be used in the calculation of Integrated Reference EPNL.

Header:

FileType**

FileName**

FileDateTime**

ProjectName**

DistanceUnits**

AngleUnits**

SpeedUnits**

Test TOH (Time at OverHead)**

Reference TOH (Time at OverHead)**

Test ZOH (Height above ground at OverHead)**

Ref. ZOH (Ref. Height above ground at OverHead)**

Average Test Groundspeed**

29SEP2017

59

Reference Groundspeed**

Average test climb/descent angle**

Ref. climb/descent angle**

Test soundspeed**

Ref. soundspeed**

Test microphone X Y Z coordinates**

Test microphone height above local ground**

Ref. microphone Y coordinate**

Ref. microphone height above local ground**

Test flight path CPA (Closest Point of Approach)**

Ref. flight path CPAR (Closest Point of Approach)**

Ref flight path CPAOHR (Closest Point of Approach for centerline location)**

GeneratedBy**

NumberOfGenerationFiles**

Column Labels:

Re
c#

Tm
hh

Tm
m

m

Tm
ss

Te
hh

Te
m

m

Te
ss

Xe

Ye

Ze

SR

TH
ET

A

Te
Rh

h

Te
Rm

m

Te
Rs

s

Xe
R

Ye
R

Ze
R

SR
R

Tp
ro

pR

TR
hh

TR
m

m

TR
ss

EF
FI

N
T

Data:

1 12 26 29.25 12 26 26.41 -3207.604931 132.2740366 333.2783791 3227.173697 19.74869775 12 26 20.17 -5013.773554 0 1804 5327.093509 4.691413 12 26 24.86 0.8943855
2 12 26 29.75 12 26 27.09 -2994.712829 118.3722198 385.8597552 3021.280156 21.1568388 12 26 21.36 -4651.066003 0 1804 4987.225176 4.392101 12 26 25.76 0.8943855
3 12 26 30.25 12 26 27.77 -2782.626527 104.5230216 438.24211 2818.244429 22.76324766 12 26 22.55 -4289.731305 0 1804 4652.074233 4.096944 12 26 26.65 0.8941864
4 12 26 30.75 12 26 28.44 -2571.424378 90.73155859 490.406091 2618.596271 24.60903847 12 26 23.74 -3929.902954 0 1804 4322.515151 3.806711 12 26 27.54 0.8938184
5 12 26 31.25 12 26 29.12 -2361.464428 77.02121089 542.2632663 2423.25687 26.74318933 12 26 24.91 -3572.190957 0 1804 4000.068529 3.522742 12 26 28.44 0.8932134

29SEP2017

60

13) Xxxx.Simp.REF.EPNL.RPT.csv – Simplified Method Reference EPNL Report data

Description:

Output by the Simplified module, this file contains information about the simplified reference condition EPNL, including calculated
values for all Deltas, as well as the reference-condition 1/3 octave band spectrum for PNLTM, adjusted from test-day. Note that Del
Bandshare is not reported separately in this file, as it is included in DEL1. (Del Bandshare can be obtained from the associated
xxxx.TD.EPNL.RPT.csv or xxxx.TD.EPNL.MTX.csv file.)

Header:

FileType**
FileName**
FileDateTime**
ProjectName**
EPNLRSimp**
PNLTMRSimp**
DEL1**
DELPeak**
DEL2**
DEL2D**
DEL2S**
DEL3**
Max2Peak**
Max2PeakK**
GeneratedBy**
NumberOfGenerationFiles**
GenFileName1**
GenFileDateTime1**
GenFileName2**
GenFileDateTime2**
GenFileName3**

29SEP2017

61

GenFileDateTime3**
GenFileName4**
GenFileDateTime4**
GenFileName5**
GenFileDateTime5**
GenFileName6**
GenFileDateTime6**
GenFileName7**
GenFileDateTime7**
OtherRecords**
NumberOfCommentLines**
Test-Day Delta Bandshare is included in the Simplified PNLMTR and EPNLR

Column Labels:

B17/50Hz B18/63Hz B19/80Hz B20/100Hz B21/125Hz B22/160Hz

…[continues to B40/10kHz]

Data:

83.88764 81.91851 80.01769 91.69731 96.88302 97.96787

29SEP2017

62

14) Xxxx.SPO.csv – Single-Point Tracking data report

Description:

This file contains single-point tracking data elements as might be obtained from aircraft position data obtained in the field using
photo-positioning techniques or other methods. The information can also be derived from either a position time history (.PTH file),
or a noise geometry time-history (.GTH file) using the SPoinTrkOut module. The information required has been specified in the ICAO
ETM, and is considered sufficient to define an average, straight-line flight path approximation, suitable for processing aircraft noise
data for certification purposes. All information is contained in the header of this file only. There is no “body” of data.

Header:

FileType**
FileName**
FileDateTime**
ProjectName**
GeneratedBy**
NumberOfGenerationFiles**
GenFileName1**
GenFileDateTime1**
GenFileName2**
GenFileDateTime2**
OtherRecords**
NumberOfCommentLines**
TOH (hour minute seconds)
XOH (feet)
YOH (feet)
ZOH (feet)
Mic X (feet)
Mic Y (feet)
Mic Z (feet)
Mic Height (feet)

29SEP2017

63

Single-Point CPA (feet)
Time-History CPA (feet)
AvStartTime
AvEndTIme
Average Climb/Descent Angle
(degrees)
Average Lateral Cross-Angle (degrees)
Average Ground Speed (feet/second)
Average Vector Speed (feet/second)

Column Labels:

n/a

Data:

n/a

29SEP2017

64

15) Xxxx.SSR.csv – Single spectrum record of 1/OB SPLs

Description:

A single spectrum of 1/3 octave band values. These may represent corrections to be applied to SPLs in dB, actual average SPLs for
background noise data sets, or other cases where a single spectrum is needed. The filename and comments should provide sufficient
info to identify the data.

Note: .ALF files have basically the same format, but represent atmospheric absorption coefficients in dB/distance, and may have
additional columns at the start of the data row.

Header:

FileType**
FileName**
FileDateTime**
ProjectName**
GeneratedBy**
NumberOfGenerationFiles**
OtherRecords**
NumberOfCommentLines**

Column Labels:

B17/50Hz B18/63Hz B19/80Hz B20/100Hz B21/125Hz B22/160Hz

…[continues to B40/10kHz]

Data:

0.18 0.03 0.08 0.08 0.12 0.08

29SEP2017

65

16) Xxxx.STAT.csv – Statistical data results report

Description:

Output report from the SimpleStats module. Provides values for Average level, Standard Deviation and 90% Confidence Interval for a
set of data, and identifies whether the data set was clustered or regressed and if regressed, the order of regression. Also reports
Degrees of Freedom (DOF). Data rows (one for each event) include noise level, delta and delta-squared.

Header:

FileType**
FileName**
FileDateTime**
ProjectName**
GeneratedBy**
NumberOfGenerationFiles**
GenFileName1**
GenFileDateTime1**
ScriptFile**
ScriptLine**
OtherRecords**
NumberOfCommentLines**
example input data file for Simplestats module
Average**
StdDev**
90% Confidence Interval**
Degrees of Freedom**
Student's T**
Sum of Deltas Squared**

29SEP2017

66

Data Set Type**

Column Labels:

ID Value Delta DS

Data:

1 92.4 -1.18333 1.400278
2 91.1 -2.48333 6.166944
3 93.3 -0.28333 0.080278
4 95.2 1.616667 2.613611
5 94.4 0.816667 0.666944
6 95.1 1.516667 2.300278

29SEP2017

67

17) Xxxx.STH.csv – 1/3 octave band spectral time-history

Description:

Spectral Time History data – a series of 1/3 octave band spectra vs. time. Used for inputs and outputs from many modules and
processes – the basic data set processed by SuperFAR. Header includes info about generation and project and in some cases, time-
averaging methodology. Data rows include a RecNum, which is the Record Number of the spectrum – used for internal
synchronization of data sets, closely linked with index “k” in noise certification specifications and guidance material – followed by a
timestamp, based on one of several methodologies, identified in the header, an optional relative time in seconds, and (currently
defaulting to 24) one-third octave band SPLs representing a noise spectrum output from an analyzer, ar some stage in processing.

Header:

FileType**
FileName**
FileDateTime**
ProjectName**
MicrophoneID**
AveragingMethod**
TimeStampType**
AdjustmentCode**
StartTime**
ReferenceTime**
ReferenceTimeType**
GeneratedBy**
NumberOfGenerationFiles**
GenFileName1**
GenFileDateTime1**
GenFileName2**
GenFileDateTime2**
GenFileName3**
GenFileDateTime3**

29SEP2017

68

GenFileName4**
GenFileDateTime4**
OtherRecords**
NumberOfCommentLines**

Column Labels:

Rec# TODhh TODmm TODss RelTime B17/50Hz B18/63Hz B19/80Hz B20/100Hz B21/125Hz B22/160Hz

Data:

1 12 26 29.75 21.25 77.98 81.3 85.84 85.75 87.11 87.37

2 12 26 30.25 21.75 77.65 76.69 82.3 83.03 87.41 88.68

3 12 26 30.75 22.25 84.9 82.39 80.35 85.25 89.31 89.68

4 12 26 31.25 22.75 79.71 81.52 84.23 85.96 88.01 89.18

5 12 26 31.75 23.25 82.12 80.97 85.64 87.46 88.51 90.48

6 12 26 32.25 23.75 85.4 85.36 87.76 88.97 90.72 88.58

7 12 26 32.75 24.25 83.87 87.63 89.36 89.27 92.02 90.48

29SEP2017

69

APPENDIX 3 – Data Analysis and Visualization

Output data files can be examined using text-editors or spreadsheet programs. It can be extremely
useful when evaluating differing methodologies to generate a three-dimensional surface plot – similar to
a waterfall plot - of spectral time-history data for an aircraft noise event. Such plots are available within
Microsoft Excel. The simplest way to do so is to double-click on an STH file, which will open it in Excel (if
Excel is set as the default software for the .csv file type within the operating system environment). Then
the data values for the columns labelled with center frequencies and band numbers can be selected,
followed by clicking on “Insert” in the main menu bar, then from the “Charts” section, select “Other
Chart”, then the leftmost option under “Surface Charts”, which may have a tooltip popup saying “3D
Surface Chart”. Once this is selected, a small chart appears in the middle of the selected data area.
Right-click on the chart, then select “Move chart” from the pop-up menu. Select “New sheet:” and
enter a new name or use the default, then click “OK”. With the new chart sheet displayed, right-click in
the chart area again, and select “Select Data…”. In the pop-up that appears, click on the button labelled
“Switch Row/Column”, then click “OK”. The chart should now have an appearance similar to this:

29SEP2017

70

In this mode, Excel defines the axes as follows:

X: Horizontal – frequency (1/3 octave bands)
Y: Vertical – amplitude (dBSPL)
Z: Depth – time (spectrum record numbers)

There are many useful options for improving the displayed plot, including 3D rotations, scaling,
and labelling info. These are beyond the scope of this User Guide, but the following is the same
chart, modified for better presentation:

29SEP2017

71

This version clearly illustrates the presence of low-frequency pseudotones caused by constructive and
destructive interference between the direct and reflected sound paths from the aircraft to the
microphone. Doppler-shifted tones exhibit a constant downward shift in frequency over time, while
pseudotones exhibit a characteristic downward – then upward shift in frequency over time. This graphic
also illustrates the effects of reconstructing masked high-frequency SPLs: in some cases, the
reconstructed SPLs are extrapolated to levels below zero dB SPL.

―

29SEP2017

USDOT Volpe Center Acoustics
SuperFAR

(Spectral Data Processing Suite)
Developer’s Manual

Dave Read & Chris Cutler, Environmental Measurement and Modeling Division, V-324

Eugene O’Neil (Contractor - Safety Management Systems)

SuperFAR 6.0 : 29 September 2017

Page 2 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Foreword

SuperFAR is a suite of Software modules developed by the USDOT Volpe Center Acoustics Facility (part of the
Environmental Measurement & Modeling Division – V324 – of the Center for Policy, Planning and Environment –
V320).

The software, funded by FAA’s Office of Environment & Energy, Noise Division (AEE-100), has been developed
under the Aircraft Noise Certification Support Interagency Agreements between AEE and Volpe, and is intended
primarily for use in the Validation of Certification Applicants’ Software and Methodology, as required by FAA Order
8110.4C.

SuperFAR is implemented in the Python programming language, and its operation is entirely script-based. This allows
for readability of code and for simple text-editor coding and modification.

SuperFAR includes FAA-approved methodologies for all aspects of computing reference-condition EPNL noise levels
from measured 1/3 octave band spectral time-histories of aircraft noise data. (Measured aircraft position and
meteorological data are also required as inputs.) For each element of the process, SuperFAR includes at least one
approved method, and in many cases, includes several alternate methods, which may or may not be considered
“equivalent” under the specifications and requirements of Combined Federal Regulations, Title 14, part 36.
Additionally, due to the flexibility of the scripting approach used, alternate sequences of operations may be
implemented that may or may not meet the part 36 requirements. A preferred process script and example data set is
provided with the distribution package. This preferred methodology is entirely in compliance with the part 36
requirements, if applied to appropriately-measured and collected input data sets.

This Developer’s Manual is being provided for the first time with Version 6.0 of the SuperFAR software, which is the
third version externally released to FAA. A Users’ Guide, provided initially with Version 5.0 of the software, has been
updated to Version 2 for this release. The Users’ Guide provides practical information about the algorithms and
processes available within SuperFAR, as well as guidance on development of scripts and data sets. This Developer’s
Manual provides detailed information on the software elements themselves, including specifics on each module, data
object and structure. Additionally, this manual provides instruction on developing new modules and data structures.
The bulk of this documentation is generated automatically with each new “build” of SuperFAR as an html document.

The Manual is divided up into six sections: Section 1 addresses the elements and structure of a SuperFAR process
script. Section 2 provides specifics on SuperFAR Data Types. Section 3 is a listing of each SUperFAR module (or
Application), and its Header Comments, Unit Parameters, Calls to other modules, Input Parameters, Output Parameters,
and default settings/values, where applicable. Section 4 is a guide to writing SuperFAR files. Section 5 is a guide to
reading SuperFAR files. Section 6 contains specifics on SuperFAR data file formats. In addition, there are three
appendices: Appendix A1 provides information about SuperFAR’s HTML Documentation Template Engine. Appendix
A2 provides instructions for developing new SuperFAR applications, and Appendix A3 provides instructions for
developing new SuperFAR data file formats.

Page 3 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 1: Basic Structure of a SuperFAR script

SuperFAR python scripts typically begin by importing the superfar library in the following manner:

from superfar import *

this instructs python to import all named symbols from the superfar package to be used in the script without
qualification. An experienced python programmer is likely aware of other methods of importing a library, but the
rest of this documentation assumes that superfar is imported in the above manner

The next step of a typical SuperFAR script involves setting the project name that the script is associated with, like
so:

superfar.ProjectName = 'My Example Project'

other script level-settings can also be set in a similar manner. For example, to turn off verbose debugging output that
superfar normally generates by default:

superfar.verbose = False

and to change the default values of one or more unit types (see Section 2.5: Measurable Quantities and Unit
Parameters):

superfar.DistanceUnits = 'meters'
superfar.AngleUnits = 'radians'

the remainder of a typical SuperFAR script usually consists of a sequence of commands invoking SuperFAR
applications, often in reference to SuperFAR data files. see Section 3: SuperFAR Applications and Section 6:
SuperFAR File Formats.

Page 4 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 2: SuperFAR Data Types

This section describes the various data types implemented by the SuperFAR library.

Page 5 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 2.1.1: superfar, the Configuration Object

the superfar package contains a single BaseContainer object named 'superfar' that serves as a unified storage location
for all configuration values that apply to an entire project, as opposed to individual data files or applications.

Unit Parameters:

Name Type Default
AlphaUnits Alpha Unit "dB100m"
AngleUnits Angle Unit "Degrees"
DistanceUnits Distance Unit "Feet"
FrequencyUnits Frequency Unit "Hz"
SpeedUnits Speed Unit "FPS"
TemperatureUnits Temperature Unit "Celsius"
HumidityUnits Humidity Unit "Humidity"
SPLUnits SPL Unit "dB"
TimeUnits Time Unit "HHMMSS"

Page 6 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 2.1: BaseContainer Objects

Many objects in superfar that contain data, such as Application Objects and TableData Objects are called container
objects, and inherit many useful features by being decendants of a common base class named BaseContainer.

Every BaseContainer object contains a well-defined set of named items called parameters. For example, Application
Objects have input and output parameters, and TableData Objects have parameters that correspond to file header
annotations and column names.

the specific parameters provided by a given BaseContainer class should be described by a ContainerSchema object
assigned to a variable named 'interface' in the definition of the class.

the parameters of a SuperFAR container object can be referenced using standard python array-index syntax:

container['parameter_name'] = value

by standard python object-attribute syntax:

container.parameter_name = value

and finally, multiple named parameeters of a container can be set using named-parameter function syntax:

container (
 parameter_name_1 = value1,
 parameter_name_2 = value2,
 parameter_name_3 = value3,
)

Parameter names are not case sensitive: container["Parameter_Name"] and container.PARAMETER_NAME both
reference the same parameter. Some parameters have alternate names, called aliases, which are usually a synonym
or abbreviation of the standard name. Aliases are also not case sensitive.

All container parameters have a data type that parameter values are expected to conform to. When a parameter is
assigned a value not of the expected type, the value is converted to the expected type, usually by invoking the
expected type in a functional manner on the value to be converted. This process is known as parameter coercion. For
example, if a parameter with type str is assigned the numeric value of 5, it is coerced to the value str(5), which
evaluates to '5'. Custom data types introduced by the SuperFAR library are usually designed with object constructor
methods that provide sensible and intuitive results when coercing a value.

Page 7 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 2.1.2: Application Objects

SuperFAR Applications are python classes that descend from the Application class, which is in turn a subclass of the
BaseContainer class.

Each application represents a computation involving input and output values, represented by input and output
parameters of the application container object. The computation is performed when the application class is invoked
in a function-like manner, usually with values provided for all applicable input parameters. The result returned by
this invocation is a container object that contains all of the original input values as well as the resulting output
values, all of which may be referenced later for subsequent computations.

for a further description of how Applications are used in practice, and a reference manual of individual SuperFAR
applications, see Section 3: SuperFAR Applications

for instructions on how to write a new SuperFAR application, see Appendix A2: Adding New Applications to
SuperFAR

Page 8 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 2.1.3: TableData Objects

SuperFAR file objects are python classes that descend from the TableData class, which is in turn a sublass of the
BaseContainer class.

Some subclasses of TableData represent a single row or record of data, containing data values indexed by column
name and/or band number. Named columns are implemented as a subtype of BaseContainer parameter, and thus are
case insensitive, can be indexed by array-style or or object.attribute syntax, and so forth.

Other subclasses of TableData represent multiple rows of data, usually indexed by a record number. As record
numbers are not strings, they may only be referenced by array-style subscripting. Each record stored in a multi-
record TableData object is another TableData object containing a single row of table data, in the manner described
in the previous paragraph. Since the most likely use of indexing a row of data is to then select a column of data,
multi-row TableData object also allow indexing by row and column in a single operation:

multirow_data[row, col] == multirow_data[row][col]

There is a separate python class for each specific file format, but most file formats have a very similar layout: the
first few lines of the file contain file annotations, followed by one row of column labels that serves as a column
header for the final section, which is one or more rows of data.

When an input or output parameter of a SuperFAR application is a SuperFAR data file, the user is allowed to set that
parameter to a string, which will be treated as a path to a data file.

for a description of individual SuperFAR file formats, see Section 6: SuperFAR File Formats

for instructions on how to write a new SuperFAR application, see Appendix A3: Adding New File Formats to
SuperFAR

Page 9 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 2.2: ContainerSchema Objects

a ContainerSchema object is used to declare the interface of a BaseContainer object. A ContainerSchema is
initialized with a list of Parameter objects and ContainerSchema objects to describe a set of attributes and properties
for a BaseContainer class.

Page 10 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 2.2.1: The "stdapp" Object

stdapp is a ContainerSchema object that should be included as an element in the ContainerSchema interface of all
Application classes, to define the following standard attributes common to all SuperFAR applications:

Object Properties:

Name Type Default Description
recursion_level Integer None counts the number of superfar applications invoking other superfar

applications leading up to this application being invoked.

Virtual Parameters:

Name Type Description
GenerationFiles list generates list of input parameter values that are Data objects in this application

invocation. Used to generate the default value of the GenerationFiles annotation of
TableData objects.

GeneratedBy list returns a list containing the name of the application and the current version of
superfar.

Page 11 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 2.2.2: The "stdfile" Object

stdfile is a ContainerSchema object that should be included as an element in the ContainerSchema interface of all
TableData classes, to define the following standard attributes common to all TableData formats:

Object Properties:

Name Type Default Description
path String None full file system path to external csv file
header ColumnHeader * dynamic A tuple of column keys that determines the presence and

order of column values as they are written to a file in csv
format.

If the TableData class is row-oriented, the valid column keys
that may be included in the header tuple are the names of the
column parameters in the interface, plus any index key type
accepted by the IndexedParameter of the interface, if present.

If the TableData class is multi-row, which is to say it has an
IndexedParameter with a TableData type, that TableData type
is presumed to be row-oriented, and it is used to determine
the valid column keys of the multi-row TableData class.

When a csv output file is being written, the header is written
to the csv file after the annotations, and then each row of data
is written to the csv file as a comma separated sequence of
column values corresponding to the column keys in the
header.

Conversely, when a csv input file is being read, the header is
read from the file after the annotations, and then each
subsequent line in the csv file is presumed to be the
corresponding column values of a row of data.

disk_pending Boolean True true if disk activity has not yet occurred, which is to say the
contents of the TableData container has not yet been read
from or written to a file.

app BaseContainer * dynamic the application this file was used as a parameter for.
line_number Integer None

Virtual Parameters:

Name Type Description
FileName String file name component of full file system path to file
FileDateTime tuple returns current date and time, in format used while writing file to disk.
FileNameDateTime tuple returns file name, date, and time, in format used while writing file to disk
ProjectName String a file Annotation that equals superfar.ProjectName
GeneratedBy list a file Annotation that equals app.GeneratedBy (if app exists)
GenerationFiles list a file Annotation that equals app.GenerationFiles (if app exists)

Page 12 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

File Annotations:

Name Type Default Description
ProjectName String None a file Annotation that equals superfar.ProjectName
GeneratedBy list None a file Annotation that equals app.GeneratedBy (if app

exists)
GenerationFiles list None a file Annotation that equals app.GenerationFiles (if app

exists)
ScriptFile String None a file Annotation that equals app.ScriptFile (if app

exists)
ScriptLine Integer None a file Annotation that equals app.ScriptLine (if app

exists)
OtherRecords list None an arbitrary list of user data that may be associated with

a file
Comments String "Comments go here." free-form comments

Page 13 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 2.3: Parameter Objects

objects of the Parameter class are used in a ContainerSchema object to define the name, type, and behavior of values
stored in a container. Each parameter is declared with a set of named options with values that control the behavior of
the parameter:

Parameter Objects Table

Option Description
name The name of a Parameter object is a string identifier used to access the parameter within the

container. This can always be done by using python array-indexing notation on the container
with the name of the parameter as a key. Optionally, if the name of a parameter would be a
syntactically valid python object attribute, object attribute dot-notation can also be used.

suffix A decomposed parameter may have a suffix instead of a name, specifying that the full name
of the decomposed parameter will be derived from the original parameter's name, by
appending the given suffix. for more context, see the description for the decomposition
option.

index A parameter may have an index type instead of a name, to control how the container
manages key values that are not recognised as a standard parameter name. The value of the
index parameter should be a python class, that unrecognized key values should be cast to
before the container stores or retrieves a value using the standard python dictionary
methods. The two most common index types are RowNum for TableData containers that
contain multiple rows of data, and Band for TableData containers that have multiple
columns identified by band number. Only one index parameter is allowed per container.

alias_of The alias_of option specifies that this parameter is an alias, which is to say the name of this
parameter is merely an alternate name for another "actual" parameter, that the alias_of
option identifies by name. An alias parameter must have a name, and cannot have any other
options aside from the alias_of option.

role The role of a parameter describes the purpose of the parameter within the container, which
in some cases influences the behavior of the container. For example, input and output
parameters of an Application container have a role values of 'input' or 'output'.

type The type of a parameter is a python class or SuperFAR unit describing the type of values the
parameter is intended to store. Values assigned to a parameter or retrieved from the
parameter will be coerced to the specified type. In most cases coercion simply involves
invoking the type as a constructor on the value to be coerced: for example, int("3") coerces
the string "3" to an integer 3. SuperFAR has special rules for coercing Boolean values:
strings such as "T" and "yes" are coerced to True, and "F" and "no" are coerced to False,
rather than simply calling bool(str).

When the type option of a parameter is set to an abstract python unit such as "Distance", it
stores values in an actual unit of the abstract type (ie, "Feet") as specified by a unit
parameter. (see the next entry, 'unit_type')

If a parameter has a constant value, (see the value option below) the type of the Parameter
defaults to the type of the constant value.

unit_type Unit parameters have a unit_type option instead of a standard type option, which should be
an abstract unit such as "Distance", specifying that this parameter stores a specific unit of
the abstract type (ie, "Feet"). The name of a unit parameter should always be the name of the
abstract with "Units" appended (for example, "DistanceUnits").

value Parameters that have a value option are read-only parameters. if the value option is set to a
python function, the value of the parameter is dynamically computed every time it is
accessed by invoking the function with the container as an argument, and additionally the
index key value if the parameter is an index parameter. This is called a "dynamic value
parameter". If the value option is not set to a python function, the value of the parameter is

Page 14 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Option Description
simply the value specified by the value argument. This is called a "constant value
parameter".

If a constant value parameter is not assigned an explicit type argument, the type of the
parameter is inferred from the constant value. Parameters that have a dynamic value must
always be given an explicit type.

default The default option of the Parameter class behaves almost exactly like the value option,
including the ability to compute dynamic values if given a python function. The crucial
difference is that the default option does not prevent the user from assigning a non-default
value to the parameter, after which the default value becomes irrelevant. Assigning the
python value None to a parameter will re-enable default value behavior, if present.

minval If a parameter has a minval argument, it will print a warning if it is ever assigned a value
below the minval. Obviously the type of the minval argument must be compatible with the
value type of the parameter for the purpose of comparison.

maxval Like minval, a parameter with a maxval argument will print a warning if it is ever assigned a
value below it's maxval. Similarly, the type of the maxval argument must be compatible
with the value type of the parameter for the purpose of comparison.

keywords If a parameter of type str is provided with a keywords argument containing a list or tuple of
strings, it will print a warning message if it is ever assigned a string value that does not
appear in the list of valid keywords: the valid keywords are reiterated in the warning
message, for the convenience of the user.

comment A string containing html formatted text, to document the purpose of the argument in
dynamically generated HTML documentation. If the parameter has a keywords option, the
comment value can be set to a python dictionary, mapping the keywords as keys of the
dictionary to a specific html formatted comment string for each keyword.

decomposition A decomposed parameter is a parameter that is not actually stored in the container as a
single value, but instead is broken up into sub-parameters that each store a specific part of
the original value, which can be dynamically re-composed as needed. This behavior is
enabled by the existence of decomposition argument, which contains a tuple of Parameter
objects that the decomposed parameter decomposes into.

The decomposition option is most commonly set implicitly, when SuperFAR detects that the
type of the parameter has an attribute named 'decomposition'. However, it is also possible to
set the argument explicitly, either to override some aspect of the default decomposition
associated with the class, or to assign a decomposition to a class that doesn't normally have
one.

To give a common, specific example of this abstract feature, consider a parameter named
'TOD' of type HHMMSS, which has the following default decomposition attribute attached
to the class:

HHMMSS.decomposition = (
 Parameter(suffix="hh", type=Hours),
 Parameter(suffix="mm", type=Minutes),
 Parameter(suffix="ss", type=Seconds, format='.2f'),
)

Because the Parameter objects in this decomposition have suffixes instead of names, the
final names of the sub-parameters are based on the original decomposed parameter, plus the
given suffix. Thus in the case of 'TOD', the sub-parameters will be 'TODhh', 'TODmm', and
'TODss'.

Any assignment to 'TOD' is intercepted by the container and translated into the appropriate
sub-assignments to 'TODhh', 'TODmm', and 'TODss'. The sub-parameters can also be
individually assigned, at any time and in any order. Any attempt to retrieve the value of
'TOD' results in an HHMMSS object reconstituted from the current values of 'TODhh',
'TODmm', and 'TODss'.

Page 15 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Option Description
In order for a class to be compatible with the decomposition option, it must have two crucial
qualities: The constructor for the class must be able to create an instance of itself from a
tuple of values, and instances of the class must be able to return the same elements as the
original tuple when accessed in an array-like manner. The way the HHMMSS class satisfies
these requirements are fairly complicated, but it is extremely useful to note that the standard
python tuple class satisfies the requirements by default. Thus, declarations of custom
decomposable data types based on the tuple class are trivial to implement:

class XYZ (tuple):
 decomposition = (
 Parameter(suffix="x", type=Distance),
 Parameter(suffix="y", type=Distance),
 Parameter(suffix="z", type=Distance),
)

Note that sub-parameters of a decomposed parameter fully implement type safety and unit
awareness: thus each distance value in an XYZ vector use the same unit of distance as any
other parameter of the container.

format the format option controls the printed precision of unit-based parameters, when they are
being written to a file. IE: format='.2f' limits the printed precision to two decimal places

deprecated when a parameter has a deprecated argument set to True, that signifies that the parameter is
not recommended for use in future development.

Parameter Roles

Role Description
'input' an input parameter for an Application container
'output' an output parameter for an Application container
'attribute' a generic "object attribute"
'annotation' annotations are parameters of a TableData container that provide some sort of informative meta-

data, and are printed at the top of an output csv file above the column header.
'column' columns are parameters of a single-row TableData container that describe the name and type of a

column, as it may be named in the column header of an output csv file.

Deprecated Compatibility Functions

The following functions re-implement the declarations of old Parameter classes, replacing them with the new,
unified Parameter class. They are provided here only to help understand any code that has not yet been updated to
reflect the new style:

Page 16 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 2.4: Band and Bands, RecNum and RecNums

SuperFAR provides a Band class to represent a single ANSI/ISO one-third octave band. For example, the expression

Band(17)

represents ANSI/ISO band number 17.

Band is a subclass of the python int class, and thus can be used in place of an int in any python expression that
normally expects an int. Thus, all of the following python expressions are True:

Band(17) is not 17
Band(17) == 17
Band(17) + 1 is 18
{Band(17):'match'}[17] is 'match'

SuperFAR also provides a distinct but closely related class named Bands that represents a contiguous range of Band
values. The following expressions all result in objects representing a range of bands from 17 to 40 inclusive:

Bands(17,40)
Bands((17, 40))
Bands([17, 40])

The class RecNum and RecNums behave in a similar manner to Band and Bands, but represent record numbers in a
time history file. For example:

RecNum(1)
RecNums(1, 50)

represent record 1 and the range of records from 1 to 50 respectively.

Band and RecNum are subclasses of ExclusiveIntSubclass, which throws an an exception whenever any attempt is
made to cast a Band into a RecNum or a RecNum into a band.

NOTE: Due to limitations in the specifications for Perceived Noise Level (PNL), Tone-Corrected Perceived Noise
Level (PNLT), and Effective Perceived Noise Level (EPNL), the range of bands handled by SuperFAR defaults to
band 17 through 40 (50 Hz through 10 kHz). While SuperFAR is capable of handling broader band ranges, these
metrics will not be able to handle them without external development of the metrics themselves.

Page 17 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 2.5: Measurable Quantities and Unit Parameters

A SuperFAR quantity value is a python object that stores a real-world physical measurement (such as distance), in a
form that is tightly bound to the physical unit of the measurement (such as feet). SuperFAR accomplishes this by
having a different quantity class for every unit it can handle: for example, the Feet class in SuperFAR is used to
store measurements in feet, and the expression Feet(3) creates a quantity value of 3 feet. “ If a quantity class is
invoked on an object that is already a quantity value, the value is converted to the unit of the new class: for example,
the expression Feet(Meters(1)) evaluates to Feet(3.280839895013123). This is assuming of course that there is a
sensible conversion method to apply between the two quantity classes: nonsensical conversions such as Feet
(Seconds(1)) throw an exception. ”

Quantity values also support several arithmetic operations. For example, addition and subtraction is supported
between values of the same quantity type, and produce a result of the same unit type. Distance values can be divided
by time values to get speed values, istance values can be divided by speed values to get time values, and speed
values can be multiplied by time values to get distance values. Generally speaking, if an operation on two unit
values obeys the rules of proper unit arithmetic, and the units of the result are supported by SuperFAR, the operation
should be supported.

SuperFAR also has a Unit objects that identify units by name. For example, the expression Unit('Feet') returns an
object that identifies Feet as a unit. A unit object can be used in the place of a directly-named quantity class to create
a quantity object: Unit('Feet')(3) evaluates to Feet(3). The advantage of using Unit objects over directly named
quantity classes is that Unit objects are not case sensitive, and also accept variety of aliases and abbreviations: Unit
('FEET'), Unit('foot'), and Unit('ft') are all equivalent to Unit('Feet').

Unit parameters control the unit of measurement used for values of the corresponding quantity type, within the same
SuperFAR application or data object. For a concrete example of usage, see Applications.

Unit Parameters can be set to a string value containing the name of a unit, such as 'Feet' or 'Meters'. Each string
name corresponds to a quantity unit in a fairly straightforward manner, but is not case sensitive, and also allows
alternate names and aliases such as 'ft' or 'm'.

Units that are defined as one unit divided by another unit (such as feet per second) can be specified by a string
containing any valid alias of the numerator and any valid alias of the denominator separated by a slash: ie
'feet/second', 'ft/sec', and so on.

The Feet class is a subclass of Distance, an abstract base class for all SuperFAR classes that represent concrete
distance quantities. More generally, all python quantity classes that correspond to a named unit (such as Feet) are
subclasses of one of the following abstract classes: Alpha, Angle, Distance, Frequency, Humidity, Ratio, Speed,
Temperature, and Time.

When parameters that have an abstract quantity type are assigned a value, the value to be stored in the container is
converted to concrete quantity class (such as Feet), based on the current value of the container's applicable unit
parameter (ie, DistanceUnits for Distance parameters).

Table 2.5.1: Alpha Units

name of unit aliases quantity class description
"dB100m" "dbp100m" dB100m
"dB1kft" "dbp1kft" dB1kft
"dBft" dB/Feet dBft
"dBm" dB/Meters dBm

Page 18 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Table 2.5.2: Angle Units

name of unit aliases quantity class description
"Degrees" "degree" Degrees Degrees
"Radians" "rad", "radian" Radians Radians

Table 2.5.3: Distance Units

name of unit aliases quantity class description
"Feet" "foot", "ft" Feet feet
"Inches" "in", "inch" Inches inches
"Meters" "m", "meter" Meters meters
"Miles" "mile" Miles miles
"Nautical Miles" "nm" Nautical_Miles nautical miles
"Yards" "yard", "yd" Yards yards
"kM" "1000m", "kilometer", "kilometers" kM thousands of meters
"100m" "hectometer", "hectometers", "hm", "x100m" x100m hundreds of meters
"1kft" "x1kft" x1kft thousands of feet

Table 2.5.4: Frequency Units

name of unit aliases quantity class description
"Hz" "hertz" Hz Hertz
"kHz" "kilohertz" kHz Kilohertz

Table 2.5.5: Humidity Units

name of unit aliases quantity class description
"RH" RH Percent Relative Humidity

Table 2.5.6: SPL Units

name of unit aliases quantity class description
"dB" "decibel", "decibels" dB Decibels

Table 2.5.7: Speed Units

name of unit aliases quantity class description
"FPS" Feet/Seconds FPS feet per second
"KPH" kM/Hours KPH kilometers per hour
"Knots" Nautical Miles/Hours Knots nautical miles per hour
"MPH" Miles/Hours MPH miles per hour
"MS" Meters/Seconds, "metersps", "mps" MS meters per second

Page 19 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Table 2.5.8: Temperature Units

name of unit aliases quantity class description
"Celsius" "c" Celsius
"Fahrenheit" "f" Fahrenheit
"Kelvin" "k" Kelvin
"Rankine" "r", "ra" Rankine

Table 2.5.9: Time Units

name of
unit

aliases quantity
class

description

"HHMMSS" HHMMSS a time value represented by a string containing hours, minutes, and
seconds separated by colons. For example: "3:22:05" means three
hours, 22 minutes, and 5 seconds. Parameters of this type can also
accept a simple numeric value as input, which is interpereted to
mean a number of seconds.

"Hours" "h",
"hour",
"hr", "hrs"

Hours hours

"Minutes" Minutes minutes
"Seconds" "s", "sec",

"second"
Seconds seconds

Page 20 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3: SuperFAR Applications

Each SuperFAR application is a python function, or to be more precise a python class that is invoked in a function-
like manner. The object created by invoking a SuperFAR application contains all of the output values of a
computation. For example:

result = ARP866A (
 TemperatureUnits = "Celsius",
 temperature = 25,
 humidity = 50,
)
alpha = result.alpha

This script invokes the ARP866A application with a given temperature and humidity, then extracts the alpha value
contained in the result. All SuperFAR functions follow this basic usage pattern: Input values are passed into the
application using the "name = value" syntax, and output values can be retrieved from the result object using
"object.name" syntax.

The names of input parameters and output object attributes are both not case sensitive.

All input and output parameters of a SuperFAR application have a parameter type, which in many cases is a unit
type. In the above example, the TemperatureUnits parameter is set to "Celsius". This specifies that when the
temperature parameter is set to the unitless numeric value of 25, it is internally "coerced" to the unit-aware value
Celsius(25).

When a value that is already unit-aware is provided for a unit aware parameter, but the unit of the provided value
differs from the desired unit of the parameter, it is coerced into the correct unit by unit conversion:

result = ARP866A (
 TemperatureUnits = "Celsius",
 temperature = Fahrenheit(77),
 humidity = 50,
)
alpha = result.alpha

In this case the value Fahrenheit(77) is converted to Celsius(25), and thus ultimately has the same result as the
previous example.

If a parameter is assigned a value of a fundamentally inconvertible type, or a random python object that has no
sensible coercion policy, SuperFAR raises a python runtime exception.

The final value an input parameter is converted to is always accessable in the result object using the "object.name"
syntax. Thus, in either of the previous two cases, result.temperature would return Celsius(25)

Many SuperFAR applications read input files, or write output files. The path that input files should be read from,
and the path that output files should be written to, can be specified as named parameters:

Adj2Ref (
 ProjectName = 'Regression Test',
 input_SSRData = 'Regression Data/PreDx.ssr.csv',
 input_TD_ALFData = 'Regression Data/CL_101_1.td.alf.csv',
 input_R_ALFData = 'Regression Data/CL_101_1.ff.alf.csv',
 input_SR = 10,
 input_SSR = 20,
 output_SSRData = 'Results/Adj2Ref.1.ssr.csv',
)

Page 21 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.1: ALF2ATH Application

generates ATH (Alpha Time-History) data from single ALF spectrum for each record in STH.

(Each record/row/spectrum in the alpha time-history is identical to the input ALF spectrum.)

Unit Parameters:

Name Type Default
AlphaUnits Alpha Unit "dB100m"

Input Parameters:

Name Type Default Description
ALF ALFData None input alpha spectrum, providing alpha data
STH STHData None input spectrum time history, providing time history history RecNums and

Timestamps

Output Parameters:

Name Type Description
ATH ATHData output alpha time history

Page 22 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.2: ARP866A Application

Calculates an atmospheric absorption coefficient (alpha) per SAE ARP866a for a specified temperature, humidity
and frequency using the quadratic interpolation method.

Unit Parameters:

Name Type Default
TemperatureUnits Temperature Unit "Celsius"
AlphaUnits Alpha Unit "dB100m"

Input Parameters:

Name Type Default Description
temperature Temperature None
humidity RH None
frequency Hz None

Output Parameters:

Name Type Description
alpha Alpha

Page 23 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.3: ARP866A_spectrum Application

Calculates absorption coefficients (alphas) for a specified temperature and humidity pair over a user-selected range
of frequency bands using ARP866A, and stores the result in an SSR file/object. If no user-selection for range, uses
default of ANSI/ISO bands 17-40 (50 Hz – 10 kHz)

Unit Parameters:

Name Type Default
TemperatureUnits Temperature Unit "Celsius"
AlphaUnits Alpha Unit "dB100m"
DistanceUnits Distance Unit "Feet"

Input Parameters:

Name Type Default Description
temperature Temperature None
humidity RH None

Output Parameters:

Name Type Description
ALF ALFData

Page 24 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.4: Adj2Ref Application

Adjusts a single 1/3 octave band spectrum to reference conditions, accounting for differences in test and reference
propagation distance and test and reference atmospheric absorption coefficients. Currently works with ARP866A
method. Will need to be modified to handle ARP5534.

Called By:

Integrated

Unit Parameters:

Name Type Default
DistanceUnits Distance Unit "Feet"

Input Parameters:

Name Type Default Description
tdSSR SSRData None test day SPL spectrum to be adjusted to reference conditions
tdALF ALFData None A SPL spectrum of (typically 24) test-day atmospheric absorption

coefficients (alphas).
refALF ALFData None A spectrum of Reference Condition atmospheric absorption coefficients

(alphas)
sr Distance None Test-day propagation distance for the spectrum
srr Distance None Slant Range Reference propagation distance for the spectrum

Output Parameters:

Name Type Description
refSSR SSRData spectrum adjusted to reference conditions

Page 25 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.5: Badjer Application

Background noise adjuster

• identifies valid pre-detection levels
• establishes masking criteria
• identifies masked aircraft levels
• de-combines valid pre-detection noise SPLs from valid aircraft noise SPLs by performing ‘energy’-

subtraction
• applies broadband and frequency-dependent system corrections (microphone & windscreen response, system

frequency response, gain, calibration drift, etc.) to valid aircraft SPLs
• generates masking map for spectral-time-history

Calls:

MaskMan
ValidAdj

Input Parameters:

Name Type Default Description
predetectSSR SSRData None pre-detection background noise levels.
predetectWindow dB 3
postdetectSSR SSRData None post-detection background noise levels.
postdetectWindow dB 1
STH STHData None
correctionSSR SSRData None
correctionValue dB * dynamic

Output Parameters:

Name Type Description
validpreSSR SSRData adjusted data spectrum
maskcrtSSR SSRData
maskMap MapData
ambisubMap MapData
ambisubSTH STHData
gainadjSTH STHData
badjerMap MapData
badjerSTH STHData

Page 26 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.6: EPNLCalc Application

EPNL Calculator

• Used for test-day and reference condition EPNL (called by Integrated for Ref EPNL)
• Identifies Maximum record, first and last 10 dB-down records, and secondary peak records for each metric in

the input .MTX file and inserts the appropriate labels in the xINT columns of the output metric time history
• Re-calculates effective time interval (EffInt) duration for each record based on input MTX timestamps
• Calculates Bandsharing adjustment for PNLT and applies it to PNLT Max level.
• Identifies Maximum record, first and last 10 dB-down records, and secondary peak records for each metric in

the input .MTX file and inserts the appropriate labels in the xINT columns of the output metric time history
• Performs time-integration to obtain Time-Integrated LEvel or "TILE" (EPNL, SEL, etc.) Note that the

reference duration is 10 seconds for EPNL (using PNLT or PNL only), and 1 second for SEL (using any other
metric).

• Compares NVR data vs 10dB-down points, Max, etc. and tests for violations - generates warnings in
EPNL.RPT file

• generates warnings in EPNL.RPT file
• Outputs a new xxxxEPNL.MTX.csv file, which has new columns inserted for EffInt, xINT labels for each

metric type, and updated NVR data.

Called By:

Integrated

Input Parameters:

Name Type Default Description
inputMTX MTXData None input metric time history file
comments String None comment to be inserted into output files

Output Parameters:

Name Type Description
epnlMTX MTXData output metric time history file
EPNL EPNLData output EPNL report file

Page 27 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.7: GeoCalc Application

Builds a Geometry Time History that contains data (T, X, Y, Z, sound propagation distance, and sound emission
angle) for aircraft geometry at time of emission for each measured acoustic data record relative to a specific
microphone. Uses the approximate straight-line flight path methodology provided in the ETM.

• Requires that single-point straight-line flight path descriptors be available (either from externally-provided
source such as photographic positioning methodology, or by running SPoinTrkOut on Position Time History
(PTH) data set.)

• Also requires that PTH data set be available (either directly from measured TSPI data, or by running
SPoinTrkIn using externally-provided single-point straight line flight path descriptors.)

• Requires RecNums and Timestamps from test-day aircraft noise data spectral time-history file (.STH).

Unit Parameters:

Name Type Default
AngleUnits Angle Unit "Degrees"
DistanceUnits Distance Unit "Feet"
SpeedUnits Speed Unit "FPS"
TemperatureUnits Temperature Unit "Celsius"

Input Parameters:

Name Type Default Description
STH STHData None aircraft acoustics data
PTH PTHData None A series of aircraft positions vs time (usually TSPI data)
MIC MICData None Microphone coordinates & height above ground.
SPO SPOData None Single-Point straight-line flight path descriptors
Temperature Temperature None Average air temperature used in calculation of soundspeed, (written

to GTH file header)
SoundSpeed Speed None speed of sound

Output Parameters:

Name Type Description
GTH GTHData geometric time history of emission data for each input record

Page 28 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.8: Integrated Application

Integrated Procedure for Reference Condition EPNL

Calculates the Reference Condition EPNL using the Integrated Method (See ICAO Annex 16 Vol. I, Appendix 2,
Section 8.4 and ICAO ETM Vol. I, Chapter 4, Section 4.3.1.4) Assumes that test-day processing has been completed
through EPNLCalc and that RefGeo has been run.

Calls Metrix and EPNLCalc modules. Reads Reference Reception Times (TR) from REF.GTH file and assigns as
Reference Condition Timestamps in Metrix. EPNLCalc then re-calculates Effective Interval (EffInt) for each
spectrum.

Calls:

Adj2Ref
Metrix
EPNLCalc

Unit Parameters:

Name Type Default
DistanceUnits Distance Unit "Feet"

Page 29 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Input Parameters:

Name Type Default Description
bugfix Boolean False if set to True, EPNLCalc parameters inputMTX and epnlMTX

are not both assigned to the same object
tdSTH STHData None A test day time-history of one-third octave band SPLs. For

normal operation, use the most recently generated .STH.CSV
file for a particular run.

tdMap MapData None A test day time-history of masking and adjustment codes for
each 1/3 octave band SPL in the tdSTH, plus a history of the
NVR codes for each spectrum. (Used by Metrix app.

tdATH ATHData None A test day time-history of 1/3 octave band alphas (atmospheric
absorption coefficients) corresponding to each 1/3 octave band
SPL in the tdSTH. (Used by Adj2Ref function)

tdALF ALFData None A single spectrum of test day alpha values, as an alternative to
tdATH.

refALF ALFData None A single spectrum of reference-day atmospheric absorption
coefficient constants. (Used by Adj2Ref function)

refGTH REFGTHData None provides Slant Range (Test-Day propagation distance) for each
record in the “SR” column, the Reference Slant Range (Ref
propagation distance) for each record in the “SRR” column,
and provides reference reception time in the "TR" column for
use in re-computing the, effective duration for each record in
the “EffInt” column.

AFlag Boolean True include ANSI A-weighted metrics if true
CFlag Boolean True include ANSI C-weighted metrics if true
DFlag Boolean True include ANSI D-weighted metrics if true
OAFlag Boolean True include unweighted metrics if true
PFlag Boolean True include PNL metrics if true
TFlag Boolean True include PNLT metrics if true
TCB40Flag Boolean False
NoRoundFlag Boolean False
HelicopterFlag Boolean False
TCLowBand Band None

Output Parameters:

Name Type Description
EPNL EPNLData output EPNL report file
epnlMTX MTXData output metric time history file
refSTH STHData

Page 30 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.9: MASKCRT Application

Determines masking criterion for each one-third octave band.

Called By:

MaskMan

Input Parameters:

Name Type Default Description
validpreSSR SSRData None
postdetectSSR SSRData None
predetectWindow dB 3
postdetectWindow dB 1

Output Parameters:

Name Type Description
maskcrtSSR SSRData

Page 31 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.10: MASKMODE_MAP Application

Identifies masking mode for each 1/3 octave band in each spectrum record in the input SF_SpectralTimeHistory
("sAircraft.sth") from loRec to hiRec and stores masking codes for each calculated SF_Maskrec into the resulting
SF_MaskMap ("sMapOut.map").

Called By:

MaskMan

Input Parameters:

Name Type Default Description
STH STHData None
predetectSSR SSRData None
postdetectSSR SSRData None
maskcrtSSR SSRData None
lowRec Integer * dynamic
highRec Integer * dynamic

Output Parameters:

Name Type Description
maskMap MapData

Page 32 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.11: MaskMan Application

Identifies valid pre-detection levels, establishes masking criteria, identifies masked aircraft levels, and generates
masking map for spectral-time-history.

Calls:

PREDETEST
MASKCRT
MASKMODE_MAP

Called By:

Badjer

Input Parameters:

Name Type Default Description
predetectSSR SSRData None pre-detection background noise levels.
postdetectSSR SSRData None post-detection background noise levels.
predetectWindow dB 3
postdetectWindow dB 1
STH STHData None
lowRec Integer * dynamic
highRec Integer * dynamic

Output Parameters:

Name Type Description
validpreSSR SSRData adjusted data spectrum
maskcrtSSR SSRData
maskMap MapData

Page 33 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.12: Metrix Application

Applies selected frequency-weighting to each one-third octave spectrum, and calculates the broadband level for each
selected weighting; Also, if selected, calculates Perceived Noise Level (PNL), Tone-Correction (TC), and PNLT,
and saves these values to a metrics time-history (.MTX) file.

Note that PNL and selected frequency-weighted metrics are computed by virtual parameters within the SuperFAR
SSRData object specification (See SRRData.py for PNL code and frequency-weighting constants).

Calculates metric values (specified in the flags input property) for each spectrum in a spectral time history object,
Generates a metrics time-history which may be saved by the calling software.

Compares Masking and adjustment codes from .MAP file for individual bands in each spectrum to criteria provided
in the Background Noise Adjustment Procedure Volpe developed for AC36-4C and the ETM. Generates NVR (Non
Valid Record) code for each spectrum, and saves them in the .MTX file.

Note: This module is the only one that accesses NVR data from both the .MAP and the .MTX files.

Called By:

Integrated

Input Parameters:

Name Type Default Description
STH STHData None
Map MapData None
AFlag Boolean True include ANSI A-weighted metrics if true
CFlag Boolean True include ANSI C-weighted metrics if true
DFlag Boolean True include ANSI D-weighted metrics if true
OAFlag Boolean True include unweighted metrics if true
PFlag Boolean True include PNL metrics if true
TFlag Boolean True include PNLT metrics if true
TCB40Flag Boolean False
HelicopterFlag Boolean False
NoRoundFlag Boolean False
TCLowBand Band None

Output Parameters:

Name Type Description
MTX MTXData

Page 34 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.13: PNLTCalc Application

Computes TC and PNLT values for a given spectrum. Runs the ToneCorrection (previously TCCALC_1) function.
Obtains PNL from the SSRData object specification.

Input Parameters:

Name Type Default Description
SSR SSRData None
HelicopterFlag Boolean False
NoRoundFlag Boolean False
LGB Integer 40
TCLowBand Band None

Output Parameters:

Name Type Description
TC float
TCBand Band
PNL float
PNLT float

Page 35 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.14: PREDETEST Application

Tests pre-detection background noise levels against post-detection background noise levels, and sets invalid pre-
detection levels to SF_INVALID_LEVEL

Called By:

MaskMan

Input Parameters:

Name Type Default Description
predetectSSR SSRData None pre-detection background noise levels.
postdetectSSR SSRData None post-detection background noise levels.

Output Parameters:

Name Type Description
validpreSSR SSRData adjusted data spectrum

Page 36 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.15: ReAvg Application

Performs simulated Slow time-averaging (using continuous or x-sample functions) on a spectral time-history that
was analyzed using half-second linear averaging (integration), and assigns slow timestamps.

Input Parameters:

Name Type Default Description
inputSTH STHData None The spectral time-history of linear averaged aircraft noise

data.
inputMap MapData None optional map file that matches input linear sth
AveragingMethod String "CONTEXPO" Accepts the following keywords:

"CONTEXPO"
"4S100"
"4S95"

TimeStamp String "ICAOSLO" Accepts the following keywords:
"ICAOSLO"
"OLDSLO"
"START"
"MIDPT"
"END"

low_rec Integer * dynamic
high_rec Integer * dynamic

Output Parameters:

Name Type Description
outputSTH STHData The output spectral time-history of Slow time-averaged aircraft
outputMap MapData The output map file corresponding to the Slow time-history.

Page 37 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.16: Reconstruct Application

The concepts, processes and algorithms in this Application are based on Guidance Materials developed by the Volpe
Center Acoustics Facility, and accepted by domestic and international aircraft noise certificating bodies in 2003,
published as "Appendix 3" to both the ICAO Environmental Technical Manual - Third Edition, and FAA's Advisory
Circular AC36-4C: "Guidelines for Adjustment of Aircraft Noise Levels for the Effects of Background Noise".
These guidelines (to be referred to as "Appendix 3") included a complete, step-by-step procedure (referred to as
"VCAF03" methodology) includes including the "LGB" concept, which was accepted by the authorities as an
officially approved procedure. Appendix 3 also included a section outlining limits and requirements applicable to
ANY methodology developed to deal with background noise (to be referred to as "Section 4" limitations and
requirements.) To further complicate things, FAA has since determined, under advisement by Volpe, that the
simpler procedure provided in earlier version of Advisory Circular AC36-4B, should be allowed and approved as
equivalent to the VCAF03 methodology. The primary difference, being that while the VCAF03 methodology
adapted the earlier ICAO ETM assumption of a flat spectral shape at a distance of 60 meters from the aircraft under
standard atmospheric conditions (ISA+10 degrees C: 25C/70%RH or 77F/ 70%RH), the older AC method assumes
flat spectral shaping at a distance of ZERO from the aircraft. This simpler methodology will be referred to as the
"AC36-4B" variant of the VCAF03 methodology.

'Time-extrapolation section --------------------------
This section handles the set-up and control of data passed to the TimeX function, which works on a single SPL at a
time, unlike the AvAdj and FreqX functions, which handle an entire spectral record at a time. Time extrapolation is
performed per Appendix 3 of FAA's AC36-4C and ICAO's ETM Third Edition, reconstructing the value for a
masked SPL by starting with a valid SPL in the same band, but from a different spectral record (or point in time).
The criterion for Time- extrapolation is that when any of the bands between band 29 and 33 (800Hz to 2kHz) in a
spectrum are masked, time-extrapolation is performed on all HF bands (Band 29 thru 40; 800Hz through 10kHz) in
that spectrum. (Note: Code has been set up to allow an override of this when Time- and Freq- extrapolation are
mixed within a single spectrum. This special condition was an option in the DOSFAR software, and may be
implemented in future in SuperFAR for research purposes.) When using the LGB methodology, Time extrapolation
is performed on all masked HF bands in a spectrum when that spectrum's LGB is between Bands 28 and 32 (630 Hz
to 1.6kHz) inclusive.

NOTE: This version of Reconstruct uses the LGB Method exclusively. Two schema are provided for identifying
center_rec (the source of time-extrapolation): "Slice" and "Spectrum"; The "Spectrum" scheme is used when
information is available regarding the "center" of the Spectral Time-History: That is, the record of PNLTm and/ or
the Record closest to TOH (Time at OverHead). If either of these data are 'known, then it is preferred to perform
time- extrapolation outward from one of these points for every band that is being time-extrapolated. The "Slice"
scheme is used when this information is not available; instead, for each one-third octave band to be time-
extrapolated, the maximum SPL in the band is identified and the spectrum containing that Max SPL is used as the
point from which to extrapolate outward. Note that a third scheme, where the nearest valid SPL in a band in used as
the source for Time-extrapolation has not been codified yet, even though the simplistic language in Appendix 3
regarding time- extrapolation would seem to indicate that this is the preferred method. Such a scheme could
potentially extrapolate an SPL "inward" from one that is valid, but has been propagated from farther away, and
therefore less accurate than one which is farther away in time, but propagated over a shorter distance. Future
revision of Reconstruct may incorporate this scheme.

Unit Parameters:

Name Type Default
DistanceUnits Distance Unit "Feet"

Page 38 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Input Parameters:

Name Type Default Description
inputSTH STHData None Background-adjusted Aircraft Spectral Time-History data (gen by

BADJER tool or MaskMan/ValAdjust)
inputMap MapData None Associated MapData / adjustment code data (gen by BADJER tool

or MaskMan/ValAdjust)
inputGTH GTHData None Associated GTHData emission TXYZ and SR info (gen by

GEOCALC) not required for fixed-sloping option.
tdATH ATHData None Time history of Test-Day propagation path atmospheric

absorption coefficients. Either this or TDAlfa must be input. If
neither is set, alphas default to zero.

tdALF ALFData None Test-Day propagation path atmospheric absorption coefficients
(SF_MetAlfa) (gen by PROPALFAS or other means) not required
for fixed-sloping option. Either this or TDAlfaTimeHistory must
be set, if neither are set then TDAlfaTimeHistory defaults to zero.

ffALF ALFData None Free-Field Alphas (SF_MetAlfa) for empirically-derived source
spectral shaping data (Obtained by various means) - not required
for fixed-sloping option, or for AC36-4B Method: Flat (or shaped)
at ZERO distance from source. (xxxxFF.ALF) (Optional input,
default all zeros)

ffSSR SSRData None [optional] Empirically-derived Free-Field Spectrum Shape data
(SF_Spectrum), either absolute SPLs or relative values. Default to
all zeroes for flat spectrum at "source" or Free-Field Distance,
which defaults to 60 meters. NOTE: Possibility of handling
multiple FF spectra based on emission angle or other geometrical
variable) (or allow user to set all zeroes, or fixed slope, i.e.,
-3dB/third-oct band) (xxxxFF.SSR)

FFMR dB None Free-Field Spectrum - Masked Record: The 1/3 octave band SPL
value of the band of interest in the Free-Field shaping Spectrum
(determined via angular relationship of the Masked record when
the aircraft spectral shaping is considered to be non-
omnidirectional); used in determining the spectral shaping to be
applied in addition to the time-extrapolation. (Default: spectral
values equal to zero - assuming an omnidirectional flat spectral
shape under free-field conditions).

FFGR dB None Free-Field Spectrum - Good Record: The 1/3 octave band SPL
value of the band of interest in the Free-Field shaping Spectrum
(determined via angular relationship of the Good record when the
aircraft spectral shaping is considered to be non-omnidirectional);
used in determining the spectral shaping to be applied in addition
to the time-extrapolation. (Default: spectral values equal to zero -
assuming an omnidirectional flat spectral shape under free-field
conditions).

LowBand Band 17 (50Hz); If not specified elsewhere, the Approved lowest freq
ANSI/ISO band of interest: 50Hz.

HighBand Band 40 (10kHz); If not specified elsewhere, the Approved highest
frequency ANSI/ISO band of interest is 10kHz.

TopLFBand Band 28 (630Hz); For the VCAF03 / App3 BG Noise Procedure, the
highest-frequency "Low Frequency" Band is 630Hz.

BtmHFBand Band 29 (800Hz); For the VCAF03 / App3 BG Noise Procedure, the
lowest-frequency "High Frequency" Band is 800Hz.

FXCritBand Band 33 (2kHz); Criterion: ANSI/ISO Band number for lowest allowed
value of GB for Frequency-extrapolation. (Can be superseded for
research) Freq-Extrapolation is ONLY APPROVED from band 34
(2.5kHz) upward.

Page 39 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Name Type Default Description
TXCritBand Band 28 (630Hz); Criterion: ANSI/ISO Band number for lowest allowed

value of GB for Time-extrapolation. (Can be superseded for
research) Time-Extrap is ONLY APPROVED only from band 29
(800Hz) upward.

StopBand Band 28 ANSI/ISO Band number for the upper limit of AvAdj processing;
Since AvAdj normally used only for LF bands, deafaults to
ANSI/ISO 28.

FFSR Distance 60 FFSR is "Free-Field Slant Range", The Free-Field Acoustic
Propagation distance from the Aircraft to the theoretical
microphone position for the Empirically-derived source spectral
shaping. By Default, this distance is 60 meters (Based on
Approved VCAF2003 Appendix 3 Guidance).

TXCRec Integer 1 Time-Extrapolation record number. Record number of the
spectrum/maskrow to be used as the center point for time-
extrapolation of the current band

TXTop Integer 40 For future expansion - TXTop is used as a means to stop TimeX at
band other than 40, such as in cases where the user selects to
combine time and frequency extrapolation methods whithin a
single spectrum. (Default = 40). May be set to 32 for Timex only
if Bands not eligible for Freq-extrap.

TXCType String "Slice" Accepts the following keywords:
"Slice"
"Spectrum"

AC364Bflag Boolean False sets the FFSR parameter to zero, reproducing the "AC36-4B"
variant of the VCAF03 methodology which assumes flat spectral
shaping at a distance of zero meters from the aircraft.

LGBFlag Boolean True
MultiGBFlag Boolean False
VCAF03Flag Boolean True
FixedSlopeFlag Boolean False
BirdBugFlag Boolean False
MixTmFrqFlag Boolean False
HFAvAjdFlag Boolean False
LFTimeAvgFlag Boolean False
SegDFlag Boolean False
TXOutwardFlag Boolean True
AvAdjFlag Boolean True
TimeXFlag Boolean True
FreqXFlag Boolean True
UseMaskedFlag Boolean False

Output Parameters:

Name Type Description
AvgAdjSTH STHData
AvgAdjMap MapData
FreqSTH STHData
FreqMap MapData
TimeSTH STHData
TimeMap MapData
OutputSTH STHData
OutputMap MapData

Page 40 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.17: RefGeo Application

Calculates the Reference Condition emission coordinates, sound propagation distances, reception times, and
effective intervals* from the test-day noise geometry time history, Test-day spectral time-history timestamps, and
single-point tracking data values for the reference track. (See ICAO ETM Vol. I, Chapter 4, Section 4.3.1.2)
Assumes that test-day noise geometry has already been obtained by running GeoCalc App.

*NOTE: EffInt is re-computed within EPNLCalc and Integrated modules using Reference timestamps taken from
Reference Reception times (TR) in the REF.GTH output from this module.

Unit Parameters:

Name Type Default
DistanceUnits Distance Unit "Feet"
AngleUnits Angle Unit "Degrees"
SpeedUnits Speed Unit "FPS"

Input Parameters:

Name Type Default Description
SPO SPOData None
tdSTH STHData None
tdGTH GTHData None
TOHR HHMMSS None The time at which the aircraft is overhead or abeam the test

microphone on the Reference flight path. Typically ZERO or
alternately, equal to TOH.

ZOHR Distance None The vertical distance of the reference flight path above the ground at
the reference microphone location.

YMICR Distance None The lateral coordinate for the reference Microphone location:
typically zero for centerline, and either +/-150m or +/-450m for
sideline.

VGR Speed None The Reference ground speed of the aircraft. Horizontal component
of the reference speed along the reference flight path.) Units:
"KTS", "MPH", "KMH", "FPS","M/S"

RGAMMA Angle None The reference climb/descent angle
TOH HHMMSS * dynamic The time at which the aircraft is overhead or abeam the test

microphone on the test flight path.
ZOH Distance * dynamic The vertical distance of the test-day straight-line flight path above

the ground at the microphone location.
VG Speed * dynamic The average test-day ground speed of the aircraft, based on the

noise duration (10-dB-down points)
GAMMA Angle * dynamic The average climb/descent angle of the straight-line test-day flight

path, based on the noise duration (10-dB-down points)
CPA Distance * dynamic Closest Point of Approach (minimum distance between test

microphone and the straight-line test-day flight path).

Output Parameters:

Name Type Description
refGTH REFGTHData

Page 41 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.18: SPoinTrkIn Application

Takes as input single-point tracking data from user prompts or an .INI file, and generates a Position Time History
(.PTH) file that can be read by GeoCalc.

Unit Parameters:

Name Type Default
DistanceUnits Distance Unit "Feet"
SpeedUnits Speed Unit "FPS"
AngleUnits Angle Unit "Degrees"

Input Parameters:

Name Type Default Description
StartTOD HHMMSS None
TOH HHMMSS None
EndTOD HHMMSS None
TInt Seconds * dynamic
AltOH Distance None
YOff Distance None
GSPD Speed None
VSPD Speed None
PHI Angle None
CDSlope float None
CDRise Distance None
CDRun Distance None
CYAng Angle None
CYSlope float None
CYY Distance None
CYX Distance None

Output Parameters:

Name Type Description
PTHData PTHData

Page 42 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.19: SPoinTrkOut Application

Generates Single-Point Tracking info from a .GTH (Emission coordinate Geometry Time History re microphone) or
a .PTH (Raw aircraft TXYZ Position Time History) file. If an .MTX (Metrics Time History file is provided, it will
display and prompt the First and last 10 dB- down point selections for each metric type in the file. The user can
select from any of these (default: PNLT F10 and L10), or can manually input the limits of the averaging process
(AvStart and AvEnd) via prompts or .INI file. Usage note, accepted data: - Accepts either PTH OR GTH data. - If
PTH data then no MTX data. - MIC data is optional

Unit Parameters:

Name Type Default
DistanceUnits Distance Unit "Feet"
AngleUnits Angle Unit "Degrees"
SpeedUnits Speed Unit "FPS"

Input Parameters:

Name Type Default Description
GTH GTHData None
PTH PTHData None A series of aircraft position vs time (usually TSPI data)
MTX MTXData None
MIC MICData None
AvStartTime HHMMSS None
AvEndTime HHMMSS None
XOH Distance None

Output Parameters:

Name Type Description
SPO SPOData

Page 43 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.20: SSPDCalc Application

compute speed of sound from temperature

Unit Parameters:

Name Type Default
SpeedUnits Speed Unit "FPS"
TemperatureUnits Temperature Unit "Celsius"

Input Parameters:

Name Type Default Description
Temperature Temperature None air temperature
SSPDCalcType String "ICAO_FIXED" Accepts the following keywords:

"ICAO_FIXED"
"RICKLEY"
"ICAO_TM"
"SUPR_EZ"
"BERANEK_EZ"

Output Parameters:

Name Type Description
SoundSpeed Speed speed of sound

Page 44 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.21: SSPDTemp Application

This module calculates average temperature to use as input to soundspeed computation in a simplified manner. Since
SSPD is needed prior to determining aircraft noise geometry, it is impossible to know the time of PNLTM, of the
aircraft height at the emission point for the noise measured at that time. Additionally, there is not a large sensitivity
of soundspeed to temperature – about 1 FPS for each degree Fahrenheit over the range of permissible temperatures
for aircraft noise certification (-14F to 95F) - which does not vary rapidly over time or with increasing heights
typical for certification in relationship to its effect on soundspeed. Therefore several approximations are made in
determining the input temperature to use for determination of event soundspeed: First, it is not necessary to
interpolate temperature measurements at a particular height over time, since temperature measurements must occur
in close proximity to aircraft noise events – at least one of the preceding or succeeding met temperature
measurements must be within 30 minutes of the aircraft noise event. Because of this, it is considered to be sufficient
(by Dave Read) to simply average the temperature measurement values at a particular height for the closest-in-time
meteorological measurements prior to and subsequent to the aircraft noise event. Second, while the official guidance
documents for noise certification (ICAO ETM and FAA AC36-4) specify that the average of temperatures at the
ground and at aircraft height is to be used, it is considered to be sufficient (again by Dave Read) to use the 10M
temperature to represent the temperature at the ground, and to use the temperature at the closest met measurement
height (increments are limited to 100 feet or 30 meters) to that of the aircraft height at overhead, which is easily
obtainable without performing any noise geometry calculations. These elements reduce the calculation of
approximate event temperature to a very simple process that can be easily performed by hand or with a simple
software function.

Unit Parameters:

Name Type Default
TemperatureUnits Temperature Unit "Celsius"
DistanceUnits Distance Unit "Feet"

Input Parameters:

Name Type Default Description
mode Integer 4

1. Preferred
2. ETOD Approx.
3. Preferred Alternate
4. Averaged approx.
5. ETOD 10m
6. ETOD 10m Alternate
7. Average 10m

preMET METData None
postMET METData None
etodMET METData None
eTOD HHMMSS None
height Distance None

Output Parameters:

Name Type Description
ACMetHeight Distance
Avg10MTemp Temperature
AvgACMetHeightTemp Temperature
SSPDAvgTemp Temperature

Page 45 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.22: SimpleStats Application

This module performs the simple statistical computations on multiple event EPNLs required for aircraft noise
certification (for which Guidance is provided in the ETM). It works on a single composite input file that (currently)
the user must assemble from the results of running SuperFAR on a series of separate events in separate data folders.
Future development may provide for automated routines to identify and select data from various types of report files
from other SuperFAR modules.

Input Parameters:

Name Type Default Description
StatMethod String "Clustered" Accepts the following keywords:

"Clustered"
"Regressed"

K PolynomialOrder None
data StatsData None

Output Parameters:

Name Type Description
N Integer number of values
DOF Integer Degrees Of Freedom
EPNLsum float sum of EPNL values
EPNLavg float average EPNL value
T float Student's T value
SumDS float sum of delta squares
StdDev float standard deviation
CI90 float 90% confidence interval
report StatsData

Page 46 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.23: Simplified Application

SIMPLIFIED PROCEDURE for Reference Condition EPNL - Calculates the Reference Condition EPNL using the
Simplified Method (See ICAO Annex 16 Vol. I, Appendix 2, Section 8.3 and ICAO ETM Vol. I, Chapter 4, Section
4.3.1.3) Assumes that test-day processing has been completed through EPNLCalc and that RefGeo has been run.
Adjusts all spectra in TD STH input file to reference conditions, calculates PNLTR values and determines Delta
Peak and other Simplified Deltas to be added to Test-Day EPNL to obtain Simplified EPNLR.

Unit Parameters:

Name Type Default
SpeedUnits Speed Unit "FPS"
DistanceUnits Distance Unit "Feet"

Input Parameters:

Name Type Default Description
tdSTH STHData None
tdMap MapData None
tdATH ATHData None A test day time-history of 1/3 octave band alphas

(atmospheric absorption coefficients) corresponding to each
1/3 octave band SPL in the tdSTH. (Used by Adj2Ref
function)

tdALF ALFData None A single spectrum of test day alpha values, as an alternative
to tdATH.

refALF ALFData None
tdEPNL EPNLData None
refGTH REFGTHData None
tdMTX MTXData None
VG Speed 0
VGR Speed 0
DEL3 dB * dynamic
AFlag Boolean True include ANSI A-weighted metrics if true
CFlag Boolean True include ANSI C-weighted metrics if true
DFlag Boolean True include ANSI D-weighted metrics if true
OAFlag Boolean True include unweighted metrics if true
PFlag Boolean True include PNL metrics if true
TFlag Boolean True include PNLT metrics if true
TCB40Flag Boolean False
NoRoundFlag Boolean False
HelicopterFlag Boolean False
TCLowBand Band None

Output Parameters:

Name Type Description
refSTH STHData
refMTX MTXData
refEPNL REFEPNLData

Page 47 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.24: TDMet Application

Determines cumulative and layered 1/3 octave band atmospheric absorption coefficients (alphas) using ARP866A
methodology from inputs of Event Time (ETOD) and T&H vs. height profiles before and after ETOD.

Unit Parameters:

Name Type Default
DistanceUnits Distance Unit "Feet"
TemperatureUnits Temperature Unit "Celsius"
AlphaUnits Alpha Unit "dB100m"
AngleUnits Angle Unit "Degrees"

Input Parameters:

Name Type Default Description
preMET METData None T&H profile before ETOD
postMET METData None T&H profile after ETOD
ETOD HHMMSS None Aircraft Event Time-of-day
ETODType String "TOH" Accepts the following keywords:

"TOH" Time aircraft is overhead or abeam of the
microphone

"TCPA" Time at geometrical closest-point-of-approach, or
minimum distance to microphone of interest

"TMAX" Time at measurement of maximum PNLT level
"OTHER" any other TOD assigned to the aircraft event

LayerCrit Alpha * dynamic Layering Criterion variation window for 3150Hz band in dB100M
or db1KFT

ACHeight Distance None Aircraft height above ground at ETOD
MIC MICData None Microphone data file providing ZMic and HMic
ZMic Distance * dynamic Z offset (ie, altitude) of microphone site
HMic Distance * dynamic Height of microphone reciever above site
ForceLay Boolean False force Layer processing
ForceFull Boolean False force full layer processing
SPFlag Boolean False when layering is not required, force single-point (height)

methodology

Output Parameters:

Name Type Description
etodMET METData
etodALF METALFData
LayrAlf METALFData
MaxDev Alpha Maximum deviation in 3150 Hz band alpha from ground layer
LayFlag Boolean
fullALF ALFData AvgAlpha computed by full layered method
simpleALF ALFData AvgAlpha computed by simple layered method
twoptALF ALFData AvgAlpha computed by two point method
oneptALF ALFData AvgAlpha computed by one point method
avgALF ALFData AvgAlpha computed by selected or default method

Page 48 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 3.25: ValidAdj Application

Decombines valid pre-detection noise levels from valid aircraft SPLs and adds measurement system corrections to
valid aircraft SPLs.

Called By:

Badjer

Input Parameters:

Name Type Default Description
validpreSSR SSRData None
maskMap MapData None
STH STHData None
correctionSSR SSRData None
correctionValue dB * dynamic
lowRec Integer * dynamic
highRec Integer * dynamic

Output Parameters:

Name Type Description
ambisubSTH STHData
ambisubMap MapData
gainadjSTH STHData
badjerSTH STHData
badjerMap MapData

Page 49 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 4: Writing SuperFAR Files

All Superfar Data files can be read and written in a simple CSV ("Comma Separated Value") format. Each file
format typically breaks down int three sections: annotations, followed by a one-line column header, followed by one
or more rows of tabular data.

The first section of all data files contains annotations. At the most literal level, an annotation is any interface
parameter that has a role option set to 'annotation'. At a more conceptual level, they are usually values associated
with the file as a whole rather than any particular row of data. For example, unit parameters are annotations, as they
define the units used by the file as a whole. Another example is the filename, which obviously applies to the entire
file, and so forth.

Each annotation parameter is written to an output CSV file in the same order that they are are defined in the
TableData subclass interface. Most annotations occupy one row of the CSV file: the first value in the row is
annotation is the parameter name, with two asterisks appended. After the name comes the value of the parameter, or
if the parameter has the deconstruction option, the deconstructed form of the value is appended to the row as a
sequence of deconstructed values.

Some annotation parameters have a special multi-line format. All such cases begin in the same way, with a label
(usually beginning with "NumberOf" and ending in two asterisks) followed by a number of output values to follow.

Parameter Name Annotation Label Data Values
GenerationFiles NumberOfGenerationFiles** two lines per generation file:

the first line is a filename,
the second line is a date and time.

OtherRecords OtherRecords** one line per 'other record' (meaning left to user)
Comments NumberOfCommentLines** one line per each line of comment string,

split by newline character.

after all annotations are written to the output file, the header is written to the output file as a single row of column
names. For header columns that are internally stored as Band objects, the band number is translated to an
appropriate string formatted column name.

after the header row is written to the output file, each row of data is written to the output file in the same column
order defined by the header. What "each row of data" means depends on whether or not the current TableData class
is considered to be a single-row class or a multi-row class.

A TableData subclass is single row by default, unless it qualifies as multi-row. To qualify as multi-row, it must have
an index parameter (where the index type is usually RowNum) and the value type stored for each key of the index
type must be a subclass of DataTable, which is the type of each row of data in the multi-row container.

Thus if the container is a single-row class, "each row of data" simply refers to the container itself as one row of data.
If the container is a multi-row class, "each row of data" is retrieved as the values stored in the container indexed by
keys of the index type (usually RowNum), sorted in ascending order. In either case, each row of data is written to
the output file as a sequence of values corresponding to the sequence of column names specified by the header. A
proper row class for a multi-row container should also define a column parameter or alias named 'primary_key',
which is important for parsing files (as explained in the next section).

Page 50 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 5: Reading SuperFAR Files

Reading a SuperFAR file mostly involves doing the reverse of writing the file, with some caveats and special cases.
See the previous section for more context.

The first caveat about reading files is that all annotations are optional on input, and they are allowed to appear in any
order. Superfar will even defer resolving the units of annotations that depend on a unit parameter, in case the unit
parameter appears after the parameter that depends on it.

Annotations that have a constant or computed value, (ie, parameters that have a value option set) are parsed but
ignored. The only exception is FileType, which will print a warning if the parsed FileType does not match the
expected FileType.

When the header row of a data file is parsed, columns corresponding to band numbers are recognized and converted
to Band objects at the point where the container object's header attribute is assigned the value of a tuple containing
the string column names.

The SuperFAR file parser tests whether the class being parsed is single-row or multi-row, to decide how the
remaining rows of data should be parsed. If it is a single-row class, a single row of data is parsed from the file and
the column values are assigned directly to the container. If it's a multi-row class, each line of data is stored in a new
instance of the row class type, and then the row is stored in the multi-row container using the 'primary_key' of the
row, which should be a parameter or alias defined by the row class that determines what key value is used to store
the row in a multi-row container.

Page 51 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 6: SuperFAR File Formats

This section describes individual SuperFAR file formats, as implemented by corresponding subclasses of the
TableData class. See the previous two sections for a more general introduction to how SuperFAR files are read or
written.

Page 52 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 6.1: ALFData Class / File Format

A spectrum of Alpha values indexed by 1/3 octave bands

Unit Parameters:

Name Type Default
AlphaUnits Alpha Unit "dB100m"

Annotations:

Name Type Default Description
ProjectName String None a file Annotation that equals superfar.ProjectName
GeneratedBy list None a file Annotation that equals app.GeneratedBy (if

app exists)
GenerationFiles list None a file Annotation that equals app.GenerationFiles (if

app exists)
ScriptFile String None a file Annotation that equals app.ScriptFile (if app

exists)
ScriptLine Integer None a file Annotation that equals app.ScriptLine (if app

exists)
OtherRecords list None an arbitrary list of user data that may be associated

with a file
Comments String "Comments go here." free-form comments
AlphaUnits Alpha Unit "dB100m" Unit of Alpha
MicrophoneID String None
LAYERFLAG Boolean None

Data Columns:

Name Type Description
Rec# RecNum
TOD HHMMSS

Page 53 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 6.2: ATHData Class / File Format

ATHData: Alpha Time-History - a time-history of alpha rows, each containing 1/3 octave band atmospheric
absorption coefficients.

Unit Parameters:

Name Type Default
AlphaUnits Alpha Unit "dB100m"

Annotations:

Name Type Default Description
ProjectName String None a file Annotation that equals superfar.ProjectName
GeneratedBy list None a file Annotation that equals app.GeneratedBy (if

app exists)
GenerationFiles list None a file Annotation that equals app.GenerationFiles (if

app exists)
ScriptFile String None a file Annotation that equals app.ScriptFile (if app

exists)
ScriptLine Integer None a file Annotation that equals app.ScriptLine (if app

exists)
OtherRecords list None an arbitrary list of user data that may be associated

with a file
Comments String "Comments go here." free-form comments
AlphaUnits Alpha Unit "dB100m" Unit of Alpha
MicrophoneID String None
LAYERFLAG Boolean None

Page 54 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 6.3: EPNLData Class / File Format

EPNLData: Contains dB levels, record numbers and timestamps for Maximum, First & Last 10 dB-down points and
Secondary Peaks (within 2 dB of max) for each metric listed in the input MTX (Metric time-history) file. Also
provides "TILE": Time-Integrated LEvels (Including EPNL for PNLT) for each metric.

Annotations:

Name Type Default Description
ProjectName String None a file Annotation that equals superfar.ProjectName
GeneratedBy list None a file Annotation that equals app.GeneratedBy (if app

exists)
GenerationFiles list None a file Annotation that equals app.GenerationFiles (if

app exists)
ScriptFile String None a file Annotation that equals app.ScriptFile (if app

exists)
ScriptLine Integer None a file Annotation that equals app.ScriptLine (if app

exists)
OtherRecords list None an arbitrary list of user data that may be associated

with a file
Comments String "Comments go here." free-form comments
TCLowBand Band None
PNLTM dB None
DeltaBndShr dB None
ToneCorr(max-2) dB None
ToneCorr(max-1) dB None
ToneCorr(max) dB None
ToneCorr
(max+1)

dB None

ToneCorr
(max+2)

dB None

AverageTC dB None

Page 55 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 6.4: GTHData Class / File Format

GTHData: Geometry Time-History Data - history of emisson TXYZ, propagation distance (SR) and sound emission
angle (THETA)

Unit Parameters:

Name Type Default
AngleUnits Angle Unit "Degrees"
DistanceUnits Distance Unit "Feet"
TemperatureUnits Temperature Unit "Celsius"
SpeedUnits Speed Unit "FPS"

Annotations:

Name Type Default Description
ProjectName String None a file Annotation that equals

superfar.ProjectName
GeneratedBy list None a file Annotation that equals

app.GeneratedBy (if app exists)
GenerationFiles list None a file Annotation that equals

app.GenerationFiles (if app exists)
ScriptFile String None a file Annotation that equals

app.ScriptFile (if app exists)
ScriptLine Integer None a file Annotation that equals

app.ScriptLine (if app exists)
OtherRecords list None an arbitrary list of user data that may

be associated with a file
Comments String "Comments go here." free-form comments
AngleUnits Angle Unit "Degrees" Unit of Angle
DistanceUnits Distance Unit "Feet" Unit of Distance
TemperatureUnits Temperature Unit "Celsius" Unit of Temperature
SpeedUnits Speed Unit "FPS" Unit of Speed
MicrophoneID String None
Microphone(x y z h) XYZH None
Microphone Horizontal
Angle

Angle None

Microphone Vertical
Angle

Angle None

SoundSpeed Speed None
PromptTemperature Temperature None

Page 56 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 6.5: METALFData Class / File Format

METALF: Meteorological measurement height alphas

Unit Parameters:

Name Type Default
AlphaUnits Alpha Unit "dB100m"
DistanceUnits Distance Unit "Feet"

Annotations:

Name Type Default Description
ProjectName String None a file Annotation that equals

superfar.ProjectName
GeneratedBy list None a file Annotation that equals app.GeneratedBy (if

app exists)
GenerationFiles list None a file Annotation that equals app.GenerationFiles

(if app exists)
ScriptFile String None a file Annotation that equals app.ScriptFile (if

app exists)
ScriptLine Integer None a file Annotation that equals app.ScriptLine (if

app exists)
OtherRecords list None an arbitrary list of user data that may be

associated with a file
Comments String "Comments go here." free-form comments
AlphaUnits Alpha Unit "dB100m" Unit of Alpha
DistanceUnits Distance Unit "Feet" Unit of Distance
ETOD HHMMSS None Aircraft Event Time-of-day
ETODType String "TOH" Accepts the following keywords:

"TOH" Time aircraft is overhead or
abeam of the microphone

"TCPA" Time at geometrical closest-
point-of-approach, or minimum
distance to microphone of
interest

"TMAX" Time at measurement of
maximum PNLT level

"OTHER" any other TOD assigned to the
aircraft event

Page 57 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 6.6: METData Class / File Format

METData: Meteorological data (Temp and RH%) vs. height and time

Unit Parameters:

Name Type Default
DistanceUnits Distance Unit "Feet"
TemperatureUnits Temperature Unit "Celsius"

Annotations:

Name Type Default Description
ProjectName String None a file Annotation that equals

superfar.ProjectName
GeneratedBy list None a file Annotation that equals

app.GeneratedBy (if app exists)
GenerationFiles list None a file Annotation that equals

app.GenerationFiles (if app exists)
ScriptFile String None a file Annotation that equals app.ScriptFile

(if app exists)
ScriptLine Integer None a file Annotation that equals app.ScriptLine

(if app exists)
OtherRecords list None an arbitrary list of user data that may be

associated with a file
Comments String "Comments go here." free-form comments
DistanceUnits Distance Unit "Feet" Unit of Distance
TemperatureUnits Temperature Unit "Celsius" Unit of Temperature
ETOD HHMMSS None Aircraft Event Time-of-day
ETODType String "TOH" Accepts the following keywords:

"TOH" Time aircraft is overhead
or abeam of the
microphone

"TCPA" Time at geometrical
closest-point-of-approach,
or minimum distance to
microphone of interest

"TMAX" Time at measurement of
maximum PNLT level

"OTHER" any other TOD assigned to
the aircraft event

Page 58 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 6.7: MICData Class / File Format

MICData: Microphone site XYZ coordinates, Microphone height and angles

Unit Parameters:

Name Type Default
AngleUnits Angle Unit "Degrees"
DistanceUnits Distance Unit "Feet"

Annotations:

Name Type Default Description
ProjectName String None a file Annotation that equals

superfar.ProjectName
GeneratedBy list None a file Annotation that equals app.GeneratedBy (if

app exists)
GenerationFiles list None a file Annotation that equals app.GenerationFiles

(if app exists)
ScriptFile String None a file Annotation that equals app.ScriptFile (if

app exists)
ScriptLine Integer None a file Annotation that equals app.ScriptLine (if

app exists)
OtherRecords list None an arbitrary list of user data that may be

associated with a file
Comments String "Comments go here." free-form comments
AngleUnits Angle Unit "Degrees" Unit of Angle
DistanceUnits Distance Unit "Feet" Unit of Distance
MicrophoneID String None

Data Columns:

Name Type Description
X Distance
Y Distance
Z Distance
Height Distance
MVertAng Angle
MHorzAng Angle

Page 59 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 6.8: MTXData Class / File Format

#MTXData: Metrics Time-History

Annotations:

Name Type Default Description
ProjectName String None a file Annotation that equals

superfar.ProjectName
GeneratedBy list None a file Annotation that equals

app.GeneratedBy (if app exists)
GenerationFiles list None a file Annotation that equals

app.GenerationFiles (if app exists)
ScriptFile String None a file Annotation that equals app.ScriptFile

(if app exists)
ScriptLine Integer None a file Annotation that equals

app.ScriptLine (if app exists)
OtherRecords list None an arbitrary list of user data that may be

associated with a file
Comments String "Comments go here." free-form comments
MicrophoneID String None
AveragingMethod String None
TimeStampType String None
AdjustmentCode String None
StartTime HHMMSS None
ReferenceTime HHMMSS None
ReferenceTimeType String None
TCLowBand Band None
NoRndFlag Boolean None
TCB40Flag Boolean None
HeliTCFlag Boolean None
PNLTM + Delta
Bandshare

dB None

PNLTMR + Delta
Bandshare

dB None

PNLTMR + Delta
BandshareR

dB None

Delta Bandshare dB None
PNLTM Recnum Integer None
Bands Bands None

Page 60 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 6.9: MapData Class / File Format

MAPData: Masking and adjustment code map

Annotations:

Name Type Default Description
ProjectName String None a file Annotation that equals superfar.ProjectName
GeneratedBy list None a file Annotation that equals app.GeneratedBy (if app

exists)
GenerationFiles list None a file Annotation that equals app.GenerationFiles (if app

exists)
ScriptFile String None a file Annotation that equals app.ScriptFile (if app

exists)
ScriptLine Integer None a file Annotation that equals app.ScriptLine (if app

exists)
OtherRecords list None an arbitrary list of user data that may be associated with

a file
Comments String "Comments go here." free-form comments

Page 61 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 6.10: PTHData Class / File Format

PTHData: Position Time-History - measured aircraft position vs. time

Unit Parameters:

Name Type Default
DistanceUnits Distance Unit "Feet"
SpeedUnits Speed Unit "FPS"
AngleUnits Angle Unit "Degrees"

Annotations:

Name Type Default Description
ProjectName String None a file Annotation that equals

superfar.ProjectName
GeneratedBy list None a file Annotation that equals

app.GeneratedBy (if app exists)
GenerationFiles list None a file Annotation that equals

app.GenerationFiles (if app exists)
ScriptFile String None a file Annotation that equals app.ScriptFile

(if app exists)
ScriptLine Integer None a file Annotation that equals app.ScriptLine

(if app exists)
OtherRecords list None an arbitrary list of user data that may be

associated with a file
Comments String "Comments go here." free-form comments
DistanceUnits Distance Unit "Feet" Unit of Distance
SpeedUnits Speed Unit "FPS" Unit of Speed
AngleUnits Angle Unit "Degrees" Unit of Angle
Start Time HHMMSS None
Overhead Time HHMMSS None
End Time HHMMSS None
Position Time
Interval

Seconds None

Overhead Altitude Distance None
Lateral Y Offset Distance None
Ground Speed Speed None
Climb/Descent
Angle

Angle None

Lateral Cross Track
Angle

Angle None

Page 62 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 6.11: REFEPNLData Class / File Format

REFEPNLData: Report format for Simplified Reference EPNL, Reference PNLTM spectrum SPLRs, and
Simplified Deltas

Annotations:

Name Type Default Description
ProjectName String None a file Annotation that equals superfar.ProjectName
GeneratedBy list None a file Annotation that equals app.GeneratedBy (if app

exists)
GenerationFiles list None a file Annotation that equals app.GenerationFiles (if app

exists)
ScriptFile String None a file Annotation that equals app.ScriptFile (if app

exists)
ScriptLine Integer None a file Annotation that equals app.ScriptLine (if app

exists)
OtherRecords list None an arbitrary list of user data that may be associated with

a file
Comments String "Comments go here." free-form comments
EPNLRSimp float None
PNLTMRSimp float None
DEL1 dB None
DELPeak dB None
DEL2 dB None
DEL2D dB None
DEL2S dB None
DEL3 dB None
Max2Peak dB None
Max2PeakK Integer None

Page 63 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 6.12: REFGTHData Class / File Format

REFGTHData: Reference Condition Geometry Time-History

Unit Parameters:

Name Type Default
DistanceUnits Distance Unit "Feet"
AngleUnits Angle Unit "Degrees"
SpeedUnits Speed Unit "FPS"

Page 64 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Annotations:

Name Type Default Description
ProjectName String None a file Annotation that equals

superfar.ProjectName
GeneratedBy list None a file Annotation that equals

app.GeneratedBy (if app exists)
GenerationFiles list None a file Annotation that equals

app.GenerationFiles (if app
exists)

ScriptFile String None a file Annotation that equals
app.ScriptFile (if app exists)

ScriptLine Integer None a file Annotation that equals
app.ScriptLine (if app exists)

OtherRecords list None an arbitrary list of user data that
may be associated with a file

Comments String "Comments go here." free-form comments
DistanceUnits Distance Unit "Feet" Unit of Distance
AngleUnits Angle Unit "Degrees" Unit of Angle
SpeedUnits Speed Unit "FPS" Unit of Speed
Test TOH (Time at OverHead) HHMMSS None
Reference TOH (Time at
OverHead)

HHMMSS None

Test ZOH (Height above ground
at OverHead)

Distance None

Ref. ZOH (Ref. Height above
ground at OverHead)

Distance None

Average Test Groundspeed Speed None
Reference Groundspeed Speed None
Average test climb/descent
angle

Angle None

Ref. climb/descent angle Angle None
Test soundspeed Speed None
Ref. soundspeed Speed None
Test microphone X Y Z
coordinates

XYZ None

Test microphone height above
local ground

Distance None

Ref. microphone Y coordinate Distance None
Ref. microphone height above
local ground

Distance None

Test flight path CPA (Closest
Point of Approach)

Distance None

Ref. flight path CPAR (Closest
Point of Approach)

Distance None

Ref flight path CPAOHR
(Closest Point of Approach for
centerline location)

Distance None

Page 65 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 6.13: SPOData Class / File Format

A data file for output of Single Point Track definition containing only Annotation values

Unit Parameters:

Name Type Default
DistanceUnits Distance Unit "Feet"
AngleUnits Angle Unit "Degrees"
SpeedUnits Speed Unit "FPS"

Annotations:

Name Type Default Description
ProjectName String None a file Annotation that equals

superfar.ProjectName
GeneratedBy list None a file Annotation that equals app.GeneratedBy (if

app exists)
GenerationFiles list None a file Annotation that equals app.GenerationFiles

(if app exists)
ScriptFile String None a file Annotation that equals app.ScriptFile (if

app exists)
ScriptLine Integer None a file Annotation that equals app.ScriptLine (if

app exists)
OtherRecords list None an arbitrary list of user data that may be

associated with a file
Comments String "Comments go here." free-form comments
DistanceUnits Distance Unit "Feet" Unit of Distance
AngleUnits Angle Unit "Degrees" Unit of Angle
SpeedUnits Speed Unit "FPS" Unit of Speed
TOH HHMMSS None
XOH Distance None
YOH Distance None
ZOH Distance None
MicX Distance None
MicY Distance None
MicZ Distance None
MicHeight Distance None
SPCPA Distance None
THCPA Distance None
AvStartTime HHMMSS None
AvEndTime HHMMSS None
SPHI Angle None
SPCY Angle None
SPGSPD Speed None
SPVSPD Speed None
AvStart Integer None
AvEnd Integer None

Page 66 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 6.14: SSRData Class / File Format

A spectrum of dB values indexed by 1/3 octave bands. This class also implements PNL, OASPL, AWT, and DWT
as virtual parameters. Code and constants for PNL and frequency-weighted metrics are implemented here.

Annotations:

Name Type Default Description
ProjectName String None a file Annotation that equals superfar.ProjectName
GeneratedBy list None a file Annotation that equals app.GeneratedBy (if app

exists)
GenerationFiles list None a file Annotation that equals app.GenerationFiles (if app

exists)
ScriptFile String None a file Annotation that equals app.ScriptFile (if app

exists)
ScriptLine Integer None a file Annotation that equals app.ScriptLine (if app

exists)
OtherRecords list None an arbitrary list of user data that may be associated with

a file
Comments String "Comments go here." free-form comments

Data Columns:

Name Type Description
Rec# RecNum
TmTOD HHMMSS
TOD HHMMSS
RelTime Seconds
PNL float a virtual parameter that computes the Perceived Noise Level of the spectrum
OASPL float a virtual parameter that computes the Overall Sound Pressure Level of the spectrum
AWT float a virtual parameter that computes the A-Weighted sound level of the spectrum
CWT float a virtual parameter that computes the C-Weighted sound level of the spectrum
DWT float a virtual parameter that computes the D-Weighted sound level of the spectrum

Page 67 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 6.15: STHData Class / File Format

A Spectral Time-History table of 1/3 octave band SPL records indexed by Rec#

Annotations:

Name Type Default Description
ProjectName String None a file Annotation that equals

superfar.ProjectName
GeneratedBy list None a file Annotation that equals app.GeneratedBy

(if app exists)
GenerationFiles list None a file Annotation that equals

app.GenerationFiles (if app exists)
ScriptFile String None a file Annotation that equals app.ScriptFile (if

app exists)
ScriptLine Integer None a file Annotation that equals app.ScriptLine (if

app exists)
OtherRecords list None an arbitrary list of user data that may be

associated with a file
Comments String "Comments go here." free-form comments
MicrophoneID String None
AveragingMethod String None
TimeStampType String None
AdjustmentCode String None
StartTime HHMMSS None
ReferenceTime HHMMSS None
ReferenceTimeType String None

Page 68 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Section 6.16: StatsData Class / File Format

Output from SimpleStats Module

Annotations:

Name Type Default Description
ProjectName String None a file Annotation that equals

superfar.ProjectName
GeneratedBy list None a file Annotation that equals

app.GeneratedBy (if app exists)
GenerationFiles list None a file Annotation that equals

app.GenerationFiles (if app exists)
ScriptFile String None a file Annotation that equals app.ScriptFile

(if app exists)
ScriptLine Integer None a file Annotation that equals

app.ScriptLine (if app exists)
OtherRecords list None an arbitrary list of user data that may be

associated with a file
Comments String "Comments go here." free-form comments
Average float None
StdDev float None
90% Confidence
Interval

float None

Number of Values Integer None
Degrees of
Freedom

Integer None

Student's T float None
Sum of Deltas
Squared

float None

Data Set Type String "Clustered" Accepts the following keywords:
"Clustered"
"Regressed"

K PolynomialOrder None

Page 69 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Appendix A1: HTML Documentation Template Engine

This documentation is automatically generated by a python script named autodoc.py, with the help of a SuperFAR
class named HTMLDOC. This class implements an html documentation template engine for writing html
doctumentation. It is initialized with a series of template parameters, as follows:

doc = HTMLDOC (
 FILENAME = "ZIPME/$(TITLE).html",
 TITLE = "SuperFAR Version $(VERSION) Documentation",
 VERSION = superfar.version,
 DATA_SECTION = '1',
 CONTAINER_SECTION = '$(DATA_SECTION).1',
 BAND_SECTION = '$(DATA_SECTION).2',
 UNIT_SECTION = '$(DATA_SECTION).3',
 APP_SECTION = '2',
 FILE_SECTION = '3',
 TEMPLATE_SECTION = 'A1',
)

Note that several parameters reference the name of another parameter, enclosed in parenthesis and prefixed with a
dollar sign. These are called template expressions, and the template engine replaces them with the value of the
referenced variable as needed. Thus the title of the document will include the current SuperFAR version number,
and the filename includes the title of the document, and so on.

the rest of the autodoc.py script is taken up by a single invocation of the doc object's write method, on a multi-line
string that contains the template used to generate the the final html documentation, including some more advanced
examples of template expressions, such as this:

$(FILE_CLASSES) {
 <div class="section">

 <h2>Section $(FILE_SECTION).$(NUMBER): $(NAME) File Format</h2>
 <div class="indent">
 $(DESCRIPTION)
 $(UNITS?) {
 <h3>Unit Annotations:</h3>
 <div class="indent">
 $(UNITS)
 </div>
 }
 $(ANNOTATIONS?) {
 <h3>Other Annotations:</h3>
 <div class="indent">
 $(ANNOTATIONS)
 </div>
 }
 $(COLUMNS?) {
 <h3>Data Columns:</h3>
 <div class="indent">
 $(COLUMNS)
 </div>
 }
 </div>
 </div>
}

When template expressions are followed by text enclosed by a matching pair of curly braces, that is considered part
of the template expression, and the enclosed text is called a "sub-template". Each sub-template may contain other
template expressions, which may in turn have their own nested sub-templates.

In most cases, if a template expression has a sub-template, the value of the variable is presumed to be a list of
python dictionaries, and the sub-template is applied to each dictionary with the key-value pairs of the dictionary
being treated as template variables, within the scope of the sub-template. For example, the FILE_CLASSES
template parameter contains a list of dictionaries that each describe one file class, and each dictionary has a NAME
key that can be referenced in the sub-template.

Page 70 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

As a special exception to the previous general rule, if a template expression has a question mark after the variable
name, then the expression represents a test of whether the named variable is empty. To be more precise, the value is
presumed to be a list or some other list-like container object, and the test is literally whether len(val) > 0. If the test
returns true, the sub-template is included in the final result; if not, it is excluded. This is the only flow control
costruct in the template engine, but it is sufficient for the needs of the project so far.

FILE_CLASSES is a built-in variable proveded by the HTMLDOC object, and does not have to be initialized by the
user of the library. Here is a full list of built in template variables provided:

• APP_CLASSES - a list of dictionaries containing the following key-value pairs to describe an application
class:

◦ NAME - the name of the application class
◦ NUMBER - the number of the application class, as it appears in a list sorted in alphabetical order,

starting at 1
◦ DESCRIPTION - the description of the application class
◦ CALLS - a list of dictionaries, one per app called, each with one key named 'LINK' containing the name

of the called app
◦ CALLED_BY - a list of dictionaries, one per app calling this app, each with one key named 'LINK'

containing the name of the app
◦ UNITS - an html table object describing the unit parameters of this application
◦ INPUTS - an html table object describing the input parameters of this app
◦ OUTPUTS - an html table object describing the output parameters of this app

• FILE_CLASSES - a list of dictionaries containing the following key-value pairs to describe a file class:
◦ NAME - the name of the file class
◦ NUMBER - the number of the file class, as it appears in a list sorted in alphabetical order, starting at 1
◦ DESCRIPTION - the description of the file class
◦ UNITS - an html table object describing the unit parameters of the file format
◦ ANNOTATIONS - an html table object describing file annotation/parameters
◦ COLUMNS - an html table object describing file data columns

• UNIT_TABLES - a list of dictionaries containing the following key-value pairs to describe a general type of
unit:

◦ NAME - the name of the general type of unit (Distance, Time, etc...)
◦ NUMBER - the number of the general type of unit, as it appears in a list sorted in alphabetical order,

starting at 1
◦ ANCHORS - a string containging html link anchors, so that individual unit names such as "Feet" will

link to their general unit type entry
◦ TABLE - a html table object describing the specific units available for this general unit type.

Page 71 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Appendix A2: Adding New Applications to SuperFAR

To illustrate how to add a new Application to SuperFAR, let us examine a real world example of ALF2ATH.

To make ALF2ATH available to a user of the superfar package, it must be defined or imported by the __init__.py
script in the superfar directory. This is the script that is imported when a user begins a SuperFAR script with the
statement "from superfar import *". Here is a small exerpt of __init__.py where ALF2ATH is imported:

...
from .Adj2Ref import Adj2Ref
from .ALF2ATH import ALF2ATH
from .ARP866A import ARP866A
...

The statement "from .ALF2ATH import ALF2ATH" tells python to look for a module named ALF2ATH.py in the
current package (ie, in the same directory as __init__.py), and imports the symbol ALF2ATH from it. By
convention, all SuperFAR applications are defined in a module file of the same name as the application, and
imported in __init__.py in this manner. Each application module can define any number of classes, variables, or
other symbols in it's local scope as needed to implement the desired functionality of the application, but only the
application is made visible to the user by the import statement in the __init__.py module. This keeps the name-space
imported by the statement "from superfar import *" clean and well-organized, containing only the named symbols
meant to be visible to the user.

So with that in mind, here are the contents of ALF2ATH.py module that implement the ALF2ATH application class:

from .Applications import *
from .ALFData import ALFData
from .STHData import STHData
from .ATHData import ATHData

class ALF2ATH (Application):

 description = """
 generates ATH (Alpha Time-History) data from single ALF spectrum for each record in STH
 """
 interface = ContainerSchema ([
 stdapp,
 UnitParameter("AlphaUnits"),

 Input('ALF',
 type = ALFData,
 comment = "input alpha spectrum, providing alpha data"),
 Input('STH',
 type = STHData,
 comment = "input spectrum time history, providing time history"),
 Output('ATH',
 type = ATHData,
 comment = "output alpha time history"),
])

 def invoke(app):

 ALF = app.ALF
 STH = app.STH
 ATH = app.ATH

 bands = ALF.index_keys()
 ATH.header = ['rec#', 'TODHH', 'TODMM', 'TODSS'] + bands

 for rec in STH.index_keys():
 STHrec = STH[rec]
 ATHrec = ATH[rec]
 ATHrec.TOD = STHrec.TOD
 for band in bands:
 ATHrec[band] = ALF[band]

Page 72 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

The first step of writing a new module for SuperFAR is importing other symbols we need from the superfar
package, from inside of the package rather than outside of it. We cannot begin a SuperFAR module with the
statement "from superfar import *": the closest equivalent statement using the correct relative syntax would be
"from . import *". However, even this has a subtly hidden pitfall: "from . import *" would try to import the
__init__.py module, but if __init__.py imports anything the module we are currently implementing, we create a
circular dependancy loop. How can we finish importing __init__.py at the beginning of ALF2ATH.py, and yet also
finish importing ALF2ATH.py before we finish importing __init__.py?

To get around this chicken-and-egg problem, we instead begin ALF2ATH.py with "from .Applications import *",
which includes most of the core features of SuperFAR minus individual applications and TableData classes, and
then explicitly import any applications or TableData classes we need: in the case of ALF2ATH, that would be
ALFData, STHData, and ATHData.

With import statements taken care of, we can begin our class definition of the ALF2ATH class, as a subclass of the
Application class. Every sublcass of Application is expected to have at least three attributes: a description, an
interface, and an invoke method.

the description of an application is simply a string that will be included in the auto-generated documentation for
SuperFAR. It can include HTML markup.

the interface of an application should be an instance of the ContainerSchema class that defines the names and types
of this application's parematers. the constructor of the ContainerSchema class accepts one parameter, that is a list of
values used to construct the ContainerSchema.

By convention, the first value used to construct the ContainerSchema of a SuperFAR application shoulod be the
symbol stdapp, which is a ContainerSchema object defining the standard parameters shared by all SuperFAR
applications.

After stdapp, a typical SuperFAR application ContainerSchema should include any relevant unit parameters, by
constructing instances of the UnitParameter class, which is a subclass of the abstract Parameter class. Like most
subclasses of the Parameter classes, UnitParameter expects the name of the desired parameter to be provided as the
first argument to the constructor: UnitParameter is simpler than some other Parameter types by not requiring any
other constructor arguments.

Next, a typical SuperFAR application defines all of it's input and output parameters, by constructing instances of the
Input and Output classes. Input and Output are also sublcasses of the Parameter class, and follows the convention of
expecting the name of the parameter as the first argument to the constructor. Unlike UnitParameter, Input and
Output also requires a type argument, and a comment argument (technically the comment is optional, but it's
strongly recommended).

Page 73 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

Appendix A3: Adding New File Formats to SuperFAR

File formats supported by SuperFAR are read or written by instances of the TableData class, which serves as a
container for data that is read from a file or destined to be written to one. To illustrate how to add a new TableData
class to SuperFAR, and thus a new file format, let us examine a real world example of MTXData.

Just as in the case of an application, to make a TableData class like MTXData available to a user of the superfar
package, it must be defined or imported by the __init__.py script in the superfar directory. This is the script that is
imported when a user begins a SuperFAR script with the statement "from superfar import *". Here is a small exerpt
of __init__.py where MTXData is imported:

...
from .METData import METData
from .MTXData import MTXData
from .MapData import MapData
...

The statement "from .MTXData import MTXData" tells python to look for a module named MTXData.py in the
current package (ie, in the same directory as __init__.py), and imports the symbol MTXData from it. By convention,
all SuperFAR TableData classes are defined in a module file of the same name as the TableData class, and imported
in __init__.py in this manner. Each of these modules can define any number of classes, variables, or other symbols
in it's local scope as needed to implement the desired file format, but only MTXData is made visible to the user by
the import statement in the __init__.py module. This keeps the name-space imported by the statement "from
superfar import *" clean and well-organized, containing only the named symbols meant to be visible to the user.

So with that in mind, here are the contents of MTXData.py module that implement the MTXData file format:

from .DataStructures import *

epnl_row_keywords = ['', 'MAX', '2ND', 'F10', 'L10']

class MetricRowData (TableData):
 interface = ContainerSchema ([
 stdfile,
 Column('Rec#', type = RecNum),
 Column('TOD', type = HHMMSS),
 Column('RelTime', type = Seconds),
 Column('EFFINT', type = Seconds),
 Column('AWT', type = dB),
 Column('AINT', type = str, keywords = epnl_row_keywords),
 Column('CWT', type = dB),
 Column('CINT', type = str, keywords = epnl_row_keywords),
 Column('DWT', type = dB),
 Column('DINT', type = str, keywords = epnl_row_keywords),
 Column('OASPL', type = dB),
 Column('OINT', type = str, keywords = epnl_row_keywords),
 Column('PNL', type = dB),
 Column('PINT', type = str, keywords = epnl_row_keywords),
 Column('PNLT', type = dB),
 Column('TINT', type = str, keywords = epnl_row_keywords),
 Column('TONECOR', type = dB),
 Column('TONEBND', type = Band),
 Column('LGB', type = int),
 Column('NVR', type = str),

 Alias('primary_key', 'Rec#'),
])

class MTXData (TableData):
 interface = ContainerSchema ([
 FileType('Metrics Time-History'),
 Extension('.mtx.csv'),
 stdfile,

 Annotation('MicrophoneID', type = str),

Page 74 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

 Annotation('AveragingMethod', type = str),
 Annotation('TimeStampType', type = str),
 Annotation('AdjustmentCode', type = str),
 Annotation('StartTime', type = HHMMSS),
 Annotation('ReferenceTime', type = HHMMSS),
 Annotation('ReferenceTimeType', type = str),
 Annotation('TC1kFlag', type = bool),
 Annotation('NoRndFlag', type = bool),
 Annotation('TCB40Flag', type = bool),
 Annotation('HeliTCFlag', type = bool),
 Annotation('PNLTM + Delta Bandshare', type = dB),
 Annotation('PNLTMR + Delta Bandshare', type = dB),
 Annotation('PNLTMR + Delta BandshareR', type = dB),
 Annotation('Delta Bandshare', type = dB),
 Annotation('PNLTM Recnum', type = int),
 Annotation('Bands', type = Bands),

 IndexedParameter(index = RecNum, type = MetricRowData),
])

As explained in the section on applications, the first step of writing a new module for superfar is importing other
symbols we need from the superfar package, from inside of the package rather than outside of it. We cannot begin a
superfar module with the statement "from superfar import *": the closest equivalent statement using the correct
relative syntax would be "from . import *". However, even this has a subtly hidden pitfall: "from . import *" would
try to import the __init__.py module, but if __init__.py imports anything the module we are currently implementing,
we create a circular dependancy loop. How can we finish importing __init__.py at the beginning of MTXData.py,
and yet also finish importing MTXData.py before we finish importing __init__.py?

To get around this chicken-and-egg problem, we instead begin MTXData.py with "from .DataStructures import *",
which includes most of the core features of SuperFAR needed to implement a TableData class. This is sufficient for
the purpose of MTXData, but if other symbols are needed they could be imported as needed from the modules that
define them on a case by case basis.

With import statements taken care of, we can begin defining the TableData classes that represent the MTXData file
format. There are actually two classes that do this: the MetricRowData class represents a single row of data, and the
MTXData class (the actual class visible to the user) which is a multi-row data format.

the first element of the MetricRowData container class is stdfile. Just as stdapp is a ContainerSchema defining the
standard parameters common to all applications, stdfile is a ContainerSchema defining the standard parameters
common to all TableData classes.

The bulk of the remaining parameters defined by the MetricRowData interface are Column parameters, which are in
practice what makes MetricRowData behave as a "row of data", by defining what type of value is stored in the row
for each column name.

Finally, the MetricRowData interface contains an Alias object, which instructs the interface to treat 'primary_key' as
an alias for the 'Rec#' column. Aliases are a general-purpose mechanism for giving alternative names to any named
parameter in a superfar container object, but the alias name 'primary_key' has a special meaning for TableData
objects that represent a single row of data: it specifies which column is used to index rows of this type, in a multi-
row context.

Parameters that contain string values can have an optional keywords property, listing the valid string values accepted
by the parameter. All string columns in MetricRowData have the same set of acceptable keywords, so the list of
keywords is defined in one place by the name of epnl_row_keywords.

The MTXData interface begins with a FileType and an Extension, which is necissary for TableData classes intended
to be written to external csv files, in addition to the standard inclusion of stdfile.

Next, we have a series of Annotation parameters, which are named attributes associated with the data file as a
whole, rather than individual rows of data. When a TableData object is read from or written to an external csv file,
Annotation parameters correspond to rows of data in the csv file that appear above the main column header line.

Page 75 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

If a data file requires Unit parameters, they behave much like Annotations for the purpose of being read or written to
a file.

The final expression used to initialize the MTXData interface, "IndexedParameter(index = RecNum, type =
MetricRowData)", is the key expression that makes MTXData behave as a multi-row TableData class. An
IndexedParameter object with an index option set to an integer subtype (which RecNum is) declares that this
superfar containar can contain values keyed by RecNum (or any integer, which is converted to RecNum). the type of
these values indexed by RecNum is MetricRowData, the previously defined single-row TableData class. The fact
that the type of the IndexedParameter is another TableData class is the definitive criteria that superfar uses to
determine that MTXData is intended to be a multi-row TableData class.

Another use for IndexedParameter is to declare a single-row TableData class that has multiple columns that map to
an integer type, usually Band. For example, here is the declaration of the ALFData class:

from .DataStructures import *

class ALFData(TableData):
 interface = ContainerSchema ([
 FileType('ALF'),
 Extension('.alf.csv'),
 stdfile,
 UnitParameter("AlphaUnits"),

 Annotation('MicrophoneID', type = str),
 Annotation('LAYERFLAG', type = bool),

 Column('Rec#', type = RecNum),
 Column('TOD', type = HHMMSS),

 IndexedParameter(index=Band, type = Alpha, default = dBm(0)),

 Alias('primary_key', 'Rec#'),

 Alias('AlphaType', 'AlphaUnits'),
])

in this example, the "index=Band" option says that integer index values should be treated as band numbers, and the
type = Alpha which is a simple Quantity type, not a subclass of TableData. thus ALFData represents a single row of
data, with some columns indexed by band number.

Page 76 of 76SuperFAR Version 6.0 Developer's Manual

1/12/2018file:///D:/Local%20Data/FAA/Current%20SuperFAR/2017/SuperFAR%20Version%206.0...

	V324-FB48B3-LR3 - Delivery of Volpe SuperFAR V6.0 Software and Support Documentation
	SF V6.0 User Guide 28SEP2017
	SuperFAR DevMan

